

http://www.purestorage.com/accelerateyourdata?utm_medium=endemic_other&utm_source=manning&utm_campaign=db&utm_region=ams&utm_content=posh&utm_creative=default&utm_term=default&utm_keyword=default

Objectives of the Book

Goal 1: Establishing Fundamentals

• Objective: Understand the basics of PowerShell and

its syntax.

Goal 2: Building Scripting Basics

• Objective: Develop fundamental scripting skills.

Goal 3: Mastering File and Resource Management

• Objective: Gain expertise in managing files, folders, and

resources.

Goal 4: Advancing Scripting and Integration

• Objective: Dive into advanced scripting and integration

techniques.

Goal 5: Exploring Advanced Scripting Techniques

• Objective: Develop proficiency in advanced scripting.

Goal 6: Integrating PowerShell with Systems

• Objective: Apply PowerShell to system administration

tasks.

Goal 7: Creating Practical Scripts

• Objective: Apply PowerShell knowledge to real-world

scenarios.

Praise for the First Edition

A very clear and concise depiction of the best parts of PowerShell.

—Justin Coulston, Intellectual Technology

A great resource for those who want to create scripts for task automation.

—Bruno Sonnino, Revolution Software

Real-world examples, best practices, and tips from two of the most respected PowerShell MVPs.

—Roman Levchenko, Microsoft MVP

It makes you stop and think, not just “read and nod.”

—Reka Horvath, Wirecard CEE

The book to read, if you want to become an informed expert in PowerShell Scripting.

—Shankar Swamy, Stealth Mode IoT Device Startup

Learn PowerShell
Scripting in a Month of

Lunches, Second Edition
WRITE AND ORGANIZE SCRIPTS

AND TOOLS

JAMES PETTY, DON JONES, AND JEFFERY HICKS

MANN I NG
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2024 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The authors and publisher have made every effort to ensure that the information in this book
was correct at press time. The authors and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

Manning Publications Co. Development editor: Frances Lefkowitz
20 Baldwin Road Technical editor: Wes Stahler
PO Box 761 Review editor: Kishor Rit
Shelter Island, NY 11964 Production editor: Kathy Rossland

Copy editor: Julie McNamee
Proofreader: Mike Beady

Technical proofreader: Krzysztof Kamyczek
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781633436008
Printed in the United States of America

www.manning.com

 To Kacielynn, my unwavering source of support and encouragement, thank you for your
boundless patience and understanding. Your love has been my anchor, providing the

stability and inspiration to undertake ambitious projects like this one. This book
stands as a testament to the strength of our partnership.

To our two daughters, whose laughter and curiosity fill our home with joy, you
are my constant reminder of the importance of simplicity and the beauty of learning.

May this book inspire you to pursue your passions with the same enthusiasm
that you approach the world.

 —James Petty

vii

brief contents
PART 1 ... 1

1 ! Before you begin 3
2 ! Setting up your scripting environment 9

3 ! WWPD: What would PowerShell do? 16
4 ! Review: Parameter binding and

the PowerShell pipeline 23
5 ! Scripting language: A crash course 34
6 ! The many forms of scripting (and which to choose) 46

7 ! Scripts and security 56

PART 2 ... 65
8 ! Always design first 67
9 ! Avoiding bugs: Start with a command 78

10 ! Building a basic function and script module 86

11 ! Getting started with advanced functions 96
12 ! Objects: The best kind of output 107
13 ! Using all the streams 118

BRIEF CONTENTSviii

14 ! Simple help: Making a comment 131
15 ! Errors and how to deal with them 141

16 ! Filling out a manifest 153

PART 3 ..165
17 ! Changing your brain when it comes

to scripting 167

18 ! Professional-grade scripting 181
19 ! An introduction to source control with Git 193
20 ! Pestering your script 211

21 ! Signing your script 223
22 ! Publishing your script 232

PART 4 ..241
23 ! Squashing bugs 243

24 ! Enhancing script output presentation 259
25 ! Wrapping up the .NET Framework 277
26 ! Storing data—not in Excel! 287

27 ! Never the end 298

ix

contents
foreword xix
preface xxi
acknowledgments xxii
about this book xxiii
about the authors xxvi

PART 1 .. 1

1 Before you begin 3
1.1 What is toolmaking? 3
1.2 Is this book for you? 5
1.3 What you need for this book 6

PowerShell version 6 ! Administrative privileges 6
Script editor 6

1.4 How to use this book 7
1.5 Expectations 7
1.6 How to ask for help 7

2 Setting up your scripting environment 9
2.1 The operating system 9

CONTENTSx

2.2 PowerShell 10
2.3 Administrative privileges and execution policy 10
2.4 Script editors 10
2.5 Our lab environment 13
2.6 Example code 14
2.7 Your turn 14

3 WWPD: What would PowerShell do? 16
3.1 One tool, one task 17
3.2 Naming your tools 18
3.3 Naming parameters 19
3.4 Producing output 20
3.5 Don’t assume 21
3.6 Avoid innovation 22

4 Review: Parameter binding and the PowerShell pipeline 23
4.1 The operating system 23
4.2 It’s all in the parameters 24
4.3 Pipeline: ByValue 25

Introducing Trace-Command 25 ! Tracing the ByValue
parameter binding 26 ! When ByValue fails 29

4.4 ByPropertyName 29
Let’s trace ByPropertyName 30 ! When ByPropertyName fails 32
Planning ahead 33

5 Scripting language: A crash course 34
5.1 Comparisons 34

Wildcards 35 ! Collections 36 ! Troubleshooting
comparisons 36

5.2 The If construct 36
5.3 The ForEach construct 39
5.4 The Switch construct 42
5.5 The Do/While construct 42
5.6 The For construct 43
5.7 Break 44

CONTENTS xi

6 The many forms of scripting (and which to choose) 46
6.1 Tools vs. controllers 46
6.2 Thinking about tools 47
6.3 Thinking about controllers 49
6.4 Comparing tools and controllers 50
6.5 Some concrete examples 50

Emailing users whose passwords are about to expire 51
Provisioning new users 51 ! Setting file permissions 52
Helping the help desk 53

6.6 Control more 53
6.7 Lab 54

7 Scripts and security 56
7.1 Security is number one 56
7.2 Execution policy 57

Execution scope 59 ! Getting your policies 60 ! Setting an
execution policy 60

7.3 PowerShell isn’t the default application 61
7.4 Running scripts 61
7.5 Recommendations 62

PART 2 .. 65

8 Always design first 67
8.1 Tools do one thing 67
8.2 Tools are testable 69
8.3 Tools are flexible 70
8.4 Tools look native 70
8.5 For example 71
8.6 Your turn 75

Start here 75 ! Your task 76 ! Our take 76

9 Avoiding bugs: Start with a command 78
9.1 What you need to run 78
9.2 Breaking it down, and running it right 80
9.3 Running commands and digging deeper 82

CONTENTSxii

9.4 Process matters 83
9.5 Know what you need 83
9.6 Your turn 83

Start here 84 ! Your task 84 ! Our take 84

10 Building a basic function and script module 86
10.1 Starting with a basic function 86

Designing the input parameters 87 ! Writing the code 88
Designing the output 89

10.2 Creating a script module 90
10.3 Prereq check 91
10.4 Running the command 91
10.5 Your turn 92

Start here 92 ! Your task 93 ! Our take 94

11 Getting started with advanced functions 96
11.1 About CmdletBinding and common parameters 96

Accepting pipeline input 98 ! Mandatory-ness 100
Parameter validation 101 ! Parameter aliases 101
Supporting –Confirm and –WhatIf 102

11.2 Your turn 104
Start here 104 ! Your task 105 ! Our take 105

12 Objects: The best kind of output 107
12.1 Assembling the information 108
12.2 Constructing and emitting output 109
12.3 A quick test 110
12.4 An object alternative 112
12.5 Enriching objects 112
12.6 Your turn 114

Start here 114 ! Your task 115 ! Our take 115

13 Using all the streams 118
13.1 Knowing the seven output streams 118
13.2 Adding verbose and warning output 119
13.3 Doing more with -Verbose 121

CONTENTS xiii

13.4 Information output 123
A detailed Information stream example 124

13.5 Your turn 128
Start here 128 ! Your task 129 ! Our take 129

14 Simple help: Making a comment 131
14.1 Where to put your help 131
14.2 Getting started 132
14.3 Going further with comment-based help 135
14.4 Broken help 135
14.5 Beyond comments 135
14.6 Your turn 136

Start here 136 ! Your task 137 ! Our take 138

15 Errors and how to deal with them 141
15.1 Understanding errors and exceptions 141
15.2 Bad handling 143
15.3 Two reasons for exception handling 143
15.4 Handling exceptions in your tool 144
15.5 Capturing the exception 146
15.6 Handling exceptions for non-commands 147
15.7 Going further with exception handling 147
15.8 Your turn 148

Start here 148 ! Your task 149 ! Our take 150

16 Filling out a manifest 153
16.1 Module execution order 153
16.2 Creating a new manifest 154
16.3 Examining the manifest 157

Metadata 157 ! The root module 158 ! Prerequisites 158
Scripts, types, and formats 158 ! Exporting members 159

16.4 Your turn 160
Start here 160 ! Your task 161 ! Our take 161

CONTENTSxiv

PART 3 .. 165

17 Changing your brain when it comes to scripting 167
17.1 Example 1 167

The critique 168 ! Our take 169 ! Thinking beyond the
literal 171

17.2 Example 2 171
The walkthrough 172 ! Our take 173

17.3 Your turn 179
Start here 179 ! Your task 179 ! Our take 179

18 Professional-grade scripting 181
18.1 Using source control 181
18.2 Code clarity 182
18.3 Effective comments 182
18.4 Formatting your code 183
18.5 Meaningful variable names 187
18.6 Avoiding aliases 187
18.7 Logic over complexity 187
18.8 Providing help 188
18.9 Avoiding Write-Host and Read-Host 188

18.10 Sticking with single quotes 189
18.11 Not polluting the global scope 189
18.12 Being flexible 189
18.13 Prioritizing security 190
18.14 Striving for elegance 190

19 An introduction to source control with Git 193
19.1 Why source control? 193
19.2 What is Git? 194

Installing Git 194 ! Git basics 194

19.3 Repository basics 195
Creating a repository 195 ! Staging a change 196
Committing a change 197 ! Rolling back a change 197
Branching and merging 200

CONTENTS xv

19.4 Using Git with VS Code 202
19.5 Integrating with GitHub 205

20 Pestering your script 211
20.1 The vision 211
20.2 Problems with manual testing 212
20.3 Benefits of automated testing 212
20.4 Introducing Pester 212
20.5 Coding to be tested 213
20.6 What do you test? 213

Integration tests 213 ! Unit tests 213 ! Don’t test what
isn’t yours 214

20.7 Writing a basic Pester test 214
Creating a fixture 215 ! Writing the first test 217
Creating a mock 217 ! Adding more tests 218
Code coverage 220

21 Signing your script 223
21.1 The significance of script signing 223
21.2 A word about certificates 224
21.3 Configure your script signing policy 225
21.4 Code-signing basics 225

Acquiring a code-signing certificate 225 ! Trusting self-signed
certificates 227 ! Signing your scripts 228 ! Testing script
signatures 230

22 Publishing your script 232
22.1 The importance of publishing 232
22.2 Exploring the PowerShell Gallery 232
22.3 Other publishing options 233
22.4 Before you publish 233

Are you reinventing the wheel? 233 ! Updating your
manifest 234 ! Getting an API key 235

22.5 Ready, set, publish 235
Managing revisions 236

CONTENTSxvi

22.6 Publishing scripts 237
Using the Microsoft script repository 237 ! Creating
ScriptFileInfo 238 ! Publishing the script 239 ! Managing
published scripts 240

PART 4 .. 241

23 Squashing bugs 243
23.1 The three kinds of bugs 243
23.2 Dealing with syntax bugs 244
23.3 Dealing with results bugs 245
23.4 Dealing with logic bugs 245

Setting breakpoints 247 ! Setting watches 251 ! So much
more 251 ! Don’t be lazy 253

23.5 Your turn 254
Start here 254 ! Your task 255 ! Our take 256

24 Enhancing script output presentation 259
24.1 Our starting point 259
24.2 Creating a default view 260

Exploring Microsoft’s views 260 ! Adding a custom type name to
output objects 263 ! Creating a new view file 264 ! Adding the
view file to a module 268

24.3 Your turn 270
Start here 271 ! Your task 272 ! Our take 272

25 Wrapping up the .NET Framework 277
25.1 Why PowerShell exists 277

A crash course in .Net 278

25.2 Exploring a class 279
25.3 Making a wrapper 281
25.4 A more practical example 284
25.5 Your turn 285

Start here 285 ! Your task 285 ! Our take 285

26 Storing data—not in Excel! 287
26.1 Introducing SQL Server! 287
26.2 Setting up everything 288

CONTENTS xvii

26.3 Using your database: Creating a table 290
26.4 Saving data to SQL Server 293
26.5 Querying data from SQL Server 296

27 Never the end 298
27.1 Welcome to toolmaking 298
27.2 Taking your next step 299
27.3 What’s in your future? 300

index 303

xix

foreword
Scripting languages and toolkits come and go, but PowerShell has evolved to stand
the test of time. The scripting toolkit’s latest iterations are truly next-level in what they
can help users like you accomplish, which makes now the perfect time to sharpen this
tool in your toolbox.

 PowerShell has come a long way since it first appeared in 2006. Initially designed
to address challenges for Windows administrators with the command-line interface
(CLI), by 2009 Microsoft publicly referred to PowerShell as “the single most import-
ant skill a Windows administrator will need in the coming years” (http://mng.bz/
8wJZ). By using the high quantity of APIs already existing in Windows and other soft-
ware, PowerShell brought underlying functionality to a broader audience of users. As
a result, user adoption and application support evolved and grew quickly, expanding
to database administrators and anyone who uses automation to streamline tasks.

 Today, users rely upon PowerShell’s automation to simplify common tasks, save
time, and reduce the chance of operator error. PowerShell is used for a multitude of
IT tasks, including deployment and configuration, user management and auditing,
and routine administrative tasks across Microsoft environments. And, because Power-
Shell is integrated into so many environments, it’s a valuable skill for IT administra-
tors of all types.

 We’re thrilled you’re investing in your development by reading Learn PowerShell
Scripting in a Month of Lunches, Second Edition. With this book, you’ll learn how to write,
test, and organize high-quality, reusable scripts for Windows, Linux, and cloud-based
systems. Learn PowerShell Scripting in a Month of Lunches is an entry-level approach, but

http://mng.bz/8wJZ
http://mng.bz/8wJZ

FOREWORDxx

even users with extensive scripting experience will benefit from learning custom, reus-
able tools and methods to build effective pipelines and workflows.

 As promised, everything can be done during your lunch hour, with exciting exam-
ples and instructions covering the following important techniques:

 Setting up a reliable scripting environment
 Designing functions and scripts
 Effective pipeline usage
 Scripting and security
 Dealing with errors and bugs
 Source control with git
 Sharing and publishing scripts
 Professional-grade scripting practices

Pure StorageⓇ is a proud sponsor of the distribution of this book, and our experts
have been closely involved in the development and creation of our PowerShell SDK
and Toolkit. The SDK allows for full management of our flagship product, FlashArray.
Our toolkit provides a variety of different cmdlets ranging from the core Windows
Server and SQL Server to performance and inventory reporting and best practices.
We are constantly working to develop and improve our core SDK and open source
toolkit as an investment in helping Microsoft administrators simplify their experience
managing Pure Storage products.

 We hope you enjoy Learn PowerShell Scripting in a Month of Lunches and find success
learning new skills that help you reduce “swivel chair management,” simplify mun-
dane tasks, and save yourself valuable time.

—Barkz, Technical Director, FlashArray Integrations & Evangelism

xxi

preface
As someone who has experienced the transformative power of PowerShell firsthand, I
am excited to guide you through a monthlong exploration of its scripting capabilities.
Whether you’re a seasoned IT professional or a newcomer to the scripting world, this
book is designed to make your learning journey informative and enjoyable.

 In the spirit of the Month of Lunches series, each chapter is crafted to be consumed
during your lunch break, making it convenient for even the busiest schedules. The
goal is to empower you to become proficient in PowerShell scripting, one step at a
time and one lunch break at a time.

 Throughout these pages, you’ll find practical examples, hands-on exercises, and
real-world scenarios that will enhance your PowerShell skills and equip you with the
confidence to apply them in your daily tasks. This book covers various topics, from
the fundamentals to advanced scripting techniques, to ensure a comprehensive
understanding of PowerShell.

 As you delve into the world of PowerShell scripting, keep in mind the dedication
to my family. They have been my inspiration and motivation to create a resource that
is informative but also accessible and enjoyable.

 Wishing you a fulfilling and rewarding journey as you Learn PowerShell Scripting in a
Month of Lunches.

 —James Petty

xxii

acknowledgments
I extend my heartfelt gratitude to those who supported and contributed to the cre-
ation of this book. Special thanks to my daughters and my wife for their unwavering
encouragement.

 I am also grateful to Manning Publications for the opportunity to share my knowl-
edge and for all the support they have shown me during the course of writing this book.

 In particular, I’d like to thank my development editor Frances Lefkowitz, technical
proofreader Krzysztof Kamyczek, and all members of the production team for their
support with Learn PowerShell Scripting in a Month of Lunches, Second Edition.

 Special thanks go to technical editor Wes Stahler, CISSP, GCWN, GCIH, GSTRT,
MCSD, who is an associate director at The Ohio State University Wexner Medical Cen-
ter. He enjoys evangelizing PowerShell’s merits and has presented nationally at the
Microsoft Health Users Group, as well as locally for the Central Ohio PowerShell
Users Group and Central Ohio ISSA chapter.

 Thank you to all the reviewers: Al Pezewski, Dave Corun, Glen Thompson, Jeffrey
Yao, Keith Kim, Kent Spillner, Maria Ana, Oliver Korten, Peter A. Schott, Piti
Champeethong, Ranjit Sahai, Roman Levchenko, and Satej Kumar Sahu—your sug-
gestions helped make this a better book.

 —James Petty

xxiii

about this book
Learn PowerShell Scripting in a Month of Lunches is a comprehensive guide that navigates
readers through a transformative journey in the intricate world of scripting. Divided
into four parts, the book systematically builds and enhances PowerShell scripting
skills. Part 1 serves as a foundational gateway, laying prerequisites and considerations
for script creation. Transitioning to Part 2, readers move from foundational concepts
to practical implementation, crafting robust PowerShell scripts focusing on design
principles and strategic thinking. Part 3, the sophisticated phase, explores advanced
techniques and professional-grade practices, challenging conventional thinking and
emphasizing security. The concluding Part 4 delves into advanced scripting intrica-
cies, defining mastery in the scripting domain.

 Catering to IT professionals, system administrators, developers, and enthusiasts,
the book’s companion website offers code examples and resources, fostering a com-
prehensive learning experience. Engage in dynamic discussions in the liveBook forum
and benefit from real-world insights from James Petty. The acknowledgments express
gratitude to supporters and recognize reviewers’ valuable contributions. Learn Power-
Shell Scripting in a Month of Lunches is more than a book; it’s a transformative journey,
empowering readers to overcome challenges, present scripts with finesse, and embrace
perpetual growth in the scripting realm. Let the pursuit of mastery begin!

Who should read this book
Designed for IT professionals, system administrators, and those aiming to gain practi-
cal skills in PowerShell scripting, Learn PowerShell Scripting in a Month of Lunches is also

ABOUT THIS BOOKxxiv

accessible to beginners. However, we recommend beginners initiate their learning
journey with Learn PowerShell in a Month of Lunches, Fourth Edition (Manning, 2022), for
a comprehensive foundation. Tailored for individuals with limited scripting experi-
ence, the content employs a structured, hands-on approach to mastering PowerShell.
Whether you’re a newcomer to scripting or pursuing practical automation and system
administration skills, this book provides valuable insights. Building on the founda-
tional knowledge in Learn PowerShell in a Month of Lunches enhances the learning expe-
rience, facilitating a smoother transition to more advanced scripting concepts within
these pages.

 This book, Learn PowerShell Scripting in a Month of Lunches, is geared toward a
structured and hands-on learning approach, especially for day-to-day tasks, automa-
tion, and system administration. You’ll find this book is an invaluable resource. The
Month of Lunches format ensures a manageable and structured learning path, cater-
ing to busy professionals aiming to integrate PowerShell into their workflow effi-
ciently. Whether operating in a Windows environment or managing Microsoft
technologies, Learn PowerShell Scripting in a Month of Lunches equips you with the
essential knowledge and practical skills required to harness PowerShell’s power for
scripting and automation tasks.

About the code
The code provided in this book follows clear conventions to enhance readability and
understanding. The code examples, scripts, and additional resources are found in our
GitHub repository. Detailed explanations accompany each piece of code, ensuring
that readers grasp the syntax and understand the underlying principles of practical
scripting.

 This book contains many examples of source code both in numbered listings and
in line with normal text. In both cases, source code is formatted in a fixed-width
font like this to separate it from ordinary text. Sometimes code is also in bold to
highlight code that has changed from previous steps in the chapter, such as when a
new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers ("). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/learn-powershell-scripting-in-a-month-
of-lunches-second-edition. The complete code for the examples in the book is available
for download from the Manning website at www.manning.com/books/learn-powershell-
scripting-in-a-month-of-lunches-second-edition and from GitHub at https://github
.com/psjamesp/MOL-Scripting.

https://livebook.manning.com/book/learn-powershell-scripting-in-a-month-of-lunches-second-edition
https://livebook.manning.com/book/learn-powershell-scripting-in-a-month-of-lunches-second-edition
http://www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches-second-edition
http://www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches-second-edition
https://github.com/psjamesp/MOL-Scripting
https://github.com/psjamesp/MOL-Scripting
https://github.com/psjamesp/MOL-Scripting

ABOUT THIS BOOK xxv

liveBook discussion forum
Purchase of Learn PowerShell Scripting in a Month of Lunches, Second Edition, includes
free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive
discussion features, you can attach comments to the book globally or to specific sec-
tions or paragraphs. It’s a snap to make notes for yourself, ask and answer technical
questions, and receive help from the author and other users. To access the forum,
go to https://livebook.manning.com/book/learn-powershell-scripting-in-a-month-of-
lunches-second-edition/discussion. You can also learn more about Manning’s forums
and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the forum remains voluntary (and unpaid). We suggest
you try asking the authors some challenging questions lest their interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://livebook.manning.com/book/learn-powershell-scripting-in-a-month-of-lunches-second-edition/discussion
https://livebook.manning.com/book/learn-powershell-scripting-in-a-month-of-lunches-second-edition/discussion
https://livebook.manning.com/discussion

xxvi

about the authors
JAMES PETTY is currently the Director of Information Technol-
ogy at TextRequest. He is a four-time awardee of the Microsoft
MVP award. In a dedicated capacity, he also assumes the role of
volunteer CEO at DevOps Collective Inc., a nonprofit organiza-
tion operating within technology education. The organization’s
primary focus revolves around PowerShell, automation, and
DevOps. It has garnered recognition for providing an array of
free online resources, notably PowerShell.org.
 In the literary domain, James is the lead author of two pub-
lished works: Learn PowerShell in a Month of Lunches, now in its

fourth edition, and Learn PowerShell Scripting in a Month of Lunches, in its second edi-
tion. Manning proudly publishes both of these insightful publications.

 At the core of James’s passion lies automation, where he adeptly wields tools such
as PowerShell, Azure, and all facets of Windows Server environments. His prowess in
this domain has been honed over more than a decade of service as an infrastructure
administrator, catering to businesses spanning a diverse range of sizes.

 James has woven his life in the tranquil environs outside Chattanooga, Tennessee,
where he resides with his cherished wife, daughters, two dogs, and two cats.

DON JONES is a 16-year recipient of Microsoft’s MVP Award, a co-founder of Power-
Shell.org and The DevOps Collective, and the author of more than 60 technology
books—including market-defining works like the In a Month of Lunches series and the

http://PowerShell.org
http://PowerShell.org
http://PowerShell.org

ABOUT THE AUTHORS xxvii

career-focused Own Your Tech Career (Manning). Don is also the author of over a dozen
fantasy and sci-fi novels and can be contacted at DonJones.com/.

JEFFERY HICKS is an IT veteran with over 30 years of experience, much of it spent as an
IT infrastructure consultant specializing in Microsoft server technologies with an
emphasis on automation and efficiency. He is a multi-year recipient of the Microsoft
MVP Award. Jeff is a respected and well-known author, teacher, and consultant. Jeff
has taught and presented PowerShell content and the benefits of automation to IT
Pros worldwide for the last 20 years. He has authored, co-authored, and edited several
books, writes for numerous online sites and print publications, is a Pluralsight author,
and is a frequent speaker at technology conferences and user groups. Learn more
about Jeff at https://github.com/jdhitsolutions/jdhitsolutions.github.io.

https://github.com/jdhitsolutions/jdhitsolutions.github.io
http://DonJones.com/

Part 1

Welcome to the foundational segment of our scripting journey—Introduc-
tion to Scripting. This part serves as your gateway into the intricate yet fascinat-
ing world of scripting, designed to empower you with the knowledge and skills
needed to navigate the scripting landscape confidently. As you embark on chap-
ter 1, we’ll lay the groundwork for your scripting adventure, discovering essen-
tial prerequisites, considerations, and the mindset required before delving into
the intricacies of script creation. Chapter 2 guides you through the critical steps
of establishing an environment conducive to effective scripting, emphasizing the
importance of a well-configured setup for a seamless and efficient scripting
experience. We’ll dig into the philosophy of PowerShell scripting in chapter 3,
which uncovers the principles and decision-making processes that guide Power-
Shell and provides valuable insights into crafting scripts aligned with this powerful
scripting language. As we progress, chapters 4 to 7 revisit and reinforce fundamen-
tal concepts, from parameter binding and the PowerShell pipeline to a crash
course in scripting languages and an exploration of diverse scripting forms, all
while prioritizing the crucial aspect of script security. Through these chapters,
you’ll acquire the fundamental knowledge and skills to embark on the scripting
journey. Now, let’s dive in and unravel the art and science of scripting!

3

Before you begin

PowerShell has been around for more than 15 years, but it’s been a fantastic jour-
ney. If you missed the memo, PowerShell is now cross-platform, meaning it’s avail-
able on more than just Microsoft Windows. I’m still blown away that Microsoft has
open sourced PowerShell. It was initially created to solve the specific problem of
automating Windows administrative tasks, but a much simpler “batch file” language
would have sufficed. PowerShell’s inventor, Jeffrey Snover, and its entire product
team had a grander vision. They wanted something that could appeal to a broad,
diverse audience. In their vision, administrators might start very simply by running
commands to accomplish administrative tasks quickly—that’s what our previous
book, Learn PowerShell in a Month of Lunches, Fourth Edition (Manning, 2022), focused
on. The team also imagined more complex tasks and processes being automated
through varying complex scripts, which is what this book is all about.

 The PowerShell team also envisioned developers using PowerShell to create all-
new units of functionality, which we’ll hint at throughout this book. Just as your
microwave probably has buttons you’ve never pushed, PowerShell likely has func-
tionalities you may never touch because they don’t apply to you. But with this book,
you’re taking a step into PowerShell’s deepest functionality: scripting or—if you
buy into our worldview—toolmaking.

1.1 What is toolmaking?
We see many people jump into PowerShell scripting much the same way they’d
jump into batch files, VBScript, Python, and so on, and there’s nothing wrong with
that. PowerShell can accommodate a lot of different styles and approaches. But you
end up working harder than you need to unless you take a minute to understand

4 CHAPTER 1 Before you begin

how PowerShell wants to work. We believe that toolmaking is the intended way to use
PowerShell.

 PowerShell can be used to create highly reusable, context-independent tools, which
it refers to as commands. Commands typically do one small thing and do it very well. A
command might not be helpful, but PowerShell is designed to make it easy to “snap”
commands together. A single LEGO brick might not be much fun (if you’ve ever
stepped on one in bare feet, you know what we mean), but a box of those bricks, when
snapped together, can be amazing (hello, Death Star!). That’s the approach we take
to scripting in this book, and it’s why we use the word toolmaking to describe that
approach. Your effort is best spent making small, self-contained tools that can “snap
on” to other tools. This approach makes your code usable across more situations,
which saves you work, and it reduces debugging and maintenance overhead, which
saves your sanity.

 Scripting with PowerShell involves creating sequences of PowerShell commands
and instructions in a text file, usually with the .ps1 file extension. These scripts are
essentially programs written in the PowerShell scripting language, which is designed
for task automation and configuration management in Windows systems. PowerShell
scripts can be used to perform a wide range of tasks, from simple administrative tasks
to complex automation workflows.

 Here are some key aspects that differentiate scriptmaking with PowerShell from
working with commands in the PowerShell console:

 Reusability—In a PowerShell script, you can define a set of instructions or func-
tions that can be reused across different tasks. This allows for modular and
maintainable code. In contrast, when working in the command line at the Pow-
erShell console, you often type commands interactively, and reusability is lim-
ited to the history of commands or manually copying and pasting.

 Script structure—PowerShell scripts have a structured format with elements such
as variables, loops, conditions, and functions, making them suitable for more
complex and organized tasks. Command-line usage in the PowerShell console
typically involves entering one-off commands, which can be less organized and
harder to manage for complex operations.

 Automation—PowerShell scripts excel at automation. By scripting sequences of
commands, you can automate repetitive tasks, perform bulk operations, and
schedule scripts to run at specific times. This level of automation isn’t easily
achievable through the interactive use of commands in the console.

 Interactivity versus noninteractivity—When working in the PowerShell console,
you can interactively enter commands and see immediate results. In contrast,
scripts are typically noninteractive, running a series of commands without user
input. However, scripts can also be designed to prompt for user input or accept
parameters to make them more flexible.

 Script execution policy—PowerShell scripts may be subject to execution policies
that control their ability to run. These policies help prevent the inadvertent

51.2 Is this book for you?

execution of malicious scripts. When working with commands in the console,
there’s no analogous execution policy by default, as each command is executed
individually.

 Error handling—PowerShell scripts can include error-handling mechanisms,
allowing you to gracefully manage errors and exceptions. When entering com-
mands in the console, error handling is more limited, and you often must rely
on manual intervention or debugging after an error occurs.

Scriptmaking with PowerShell involves creating reusable, structured sequences of
commands to automate tasks, whereas working with commands in the PowerShell
console is more interactive and typically used for immediate, one-off tasks. PowerShell
scripts provide a powerful tool for system administrators and IT professionals to
streamline and automate Windows management tasks.

1.2 Is this book for you?
Before you go any further, you should ensure this is the right place for you. This is the
second book in the Month of Lunches series, and it’s designed for those who are already
comfortable with using PowerShell at the command line and creating reusable scripts.
Because this book focuses as much on process and approach as on syntax, it’s okay if
you’ve been scripting for a while and are just looking to improve your technique or
validate your skill set. That said, this is not an entry-level book on PowerShell itself. To
continue successfully with this book, you should be able to answer the following ques-
tions right off the top of your head:

 What command would you use to query all instances of Win32_LogicalDisk
from a remote computer? (Hint: if you answered Get-WmiObject, you’re behind
the times and need to catch up for this book to be useful to you.)

 What are the two ways PowerShell can pass data from one command to another
in the pipeline?

 Well-written PowerShell commands don’t output text. What do they output?
What commands can you use to make that output prettier on the screen?

 How would you figure out how to use the Get-WinEvent command if you had
never used it before?

 What are the different shell execution policies, and what does each one mean?

We’re not providing answers to these questions—if you’re unsure of any of them, this
isn’t the right book for you. Instead, we’d recommend Learn PowerShell in a Month of
Lunches, Fourth Edition (Manning, 2022; http://mng.bz/ddVz). Once you’ve worked
through that book and its many hands-on exercises, this book will be a logical next
step in your PowerShell education. We also assume you’re fairly experienced with the
Windows operating system because our examples will pertain to that.

http://mng.bz/ddVz

6 CHAPTER 1 Before you begin

1.3 What you need for this book
Let’s quickly run down some of what you’ll need to follow along with this book.

1.3.1 PowerShell version

We wrote this book using PowerShell 7.2, but 99% of the book applies to earlier ver-
sions of Windows PowerShell. Download PowerShell from https://docs.microsoft.com/
en-us/PowerShell/. Now, look—don’t install new versions of PowerShell on your
server computers without doing some research. Many server applications (we’re look-
ing at you, Exchange Server) are picky about which version of PowerShell they’ll work
with, and installing the wrong one can break things. In addition, be aware that each
version of PowerShell supports only specific versions of Windows—for this book, we’re
using Windows 11 and macOS.

 We’re using PowerShell 7.2 (or higher as the newer version comes out), but most
of the content will work on Windows PowerShell (5.1), although we haven’t tested
everything against that version. The content we’re covering is so core to PowerShell,
so stable, and so mature that it’s essentially evergreen, meaning it doesn’t change from
season to season. We use free e-books on https://PowerShell.org to help teach the of-
the-moment, new-and-shiny stuff related to a specific version of PowerShell; this book
is all about the solid core that remains stable.

1.3.2 Administrative privileges

You need to be able to run the PowerShell console and your editor As Administrator
(as shown on the Start menu) on your computer, mainly so that the administrative
examples we’re sharing with you will work. If you don’t know how to run PowerShell
as an administrator of your computer, this probably isn’t the right book for you.

1.3.3 Script editor

Finally, you’ll need a script editor. Windows PowerShell’s Integrated Script Editor
(ISE) is included on client versions of Windows and only works with Windows Power-
Shell. We recommend you remove this from your machine, as the PowerShell team
hasn’t performed any maintenance or support since Windows 7 was released. These
days, Microsoft recommends Visual Studio Code (VS Code), which is free and cross-
platform. Download that, and in chapter 2, we’ll show you how to set it up for use with
PowerShell. Start the download at https://code.visualstudio.com/.

NOTE VS Code and PowerShell are both cross-platform. Every concept and
practice in this book applies to PowerShell running on systems other than
Windows. But the examples we use will only run on Windows as of this writing.
We recommend sticking with Windows unless you’re willing to be very patient
and perhaps translate our running examples into ones running on other
operating systems.

https://docs.microsoft.com/en-us/PowerShell/
https://docs.microsoft.com/en-us/PowerShell/
https://docs.microsoft.com/en-us/PowerShell/
http://PowerShell.org
https://code.visualstudio.com/

71.6 How to ask for help

1.4 How to use this book
You’re meant to read one chapter of this book daily, and it should take you under an
hour to do so—except in one case, where we have a Special Bonus Double Chapter,
which we’ll call to your attention when we get there. Spend additional time, even a
day or two, completing any hands-on exercises at the chapter’s end. Do not feel the
need to press ahead and binge-read several chapters at once, even if you have an
exceptionally long lunch “hour.” Here’s why: we’re going to be throwing a lot of new
facts at you. The human brain needs time—and sleep!—to sort through those facts,
connect them to things you already know, and start turning them into knowledge. Cog-
nitive science has identified some consistent limits to how much your brain can suc-
cessfully digest in a day, and we’ve been careful to construct each chapter with those
limits in mind. So, seriously—just read one chapter per day. Try to get in at least three
or four chapters per week to keep the narrative in mind, and make sure you’re doing
the hands-on exercises we’ve provided.

TIP We’d rather you repeat a chapter and its hands-on exercises for two or
three days to ensure it’s cemented in your mind than try to binge-read many
chapters in just a day or two. Doing the former will get this stuff into your
brain more reliably.

Speaking of those exercises—do not just skip ahead and read the sample solutions
we’ve provided. Again, cognitive science clearly states that the human brain works best
when it learns new facts and immediately uses them. Even if you find a particular exer-
cise a struggle, the struggle itself forces your brain to focus and bring facts together.
Before you consult the sample solution for an easy answer, it’s better to go back and
skim through previous chapters. Constructing the response in that fashion will make
the information stick for you. It’s a bit more work for you, but it’ll pay off. If you take
the lazy approach, you’re just cheating yourself, and we don’t want that for you.

1.5 Expectations
Before you get too far into the book, we want to ensure you know what to expect. As
you might imagine, the book’s topic is pretty big, and we could cover a lot of material.
But this book is designed for you to complete in a month of lunches, so we had to
draw the line somewhere. We aim to provide you with fundamental information that
everyone should have to start scripting and creating basic PowerShell tools. This book
was never intended as an all-inclusive tutorial.

1.6 How to ask for help
You’re welcome to ask us for help in Manning’s online author forum, which you can
access at http://mng.bz/rjgE, but we encourage you to consider an online forum such
as https://PowerShell.org. We monitor the Q&A forums there, but, more importantly,
you’ll find hundreds of other like-minded individuals asking and answering ques-
tions. The critical thing with PowerShell is for you to engage and become part of its

http://mng.bz/rjgE
https://PowerShell.org

8 CHAPTER 1 Before you begin

community, meet your peers and colleagues, and become a contributor yourself in
time. PowerShell.org offers tips-and-tricks videos, free e-books, an annual in-person
conference, and a ton more, and it’s a great way to start making PowerShell a formal
part of your career path.

Summary
Hopefully, at this point, you’re eager to dive in and start scripting—or, better yet, to
start toolmaking. You should have your prerequisite software lined up and ready to go,
and you should have a good idea of how much time you’ll need to devote to this book
each week. Let’s get started.

9

Setting up your
scripting environment

We know you’re ready to jump feetfirst into the deep end of the scripting pool.
But first, we need to take some time to make sure you have an adequate environ-
ment set up to use throughout this book. This chapter may be a lunch and a half,
but you must follow along with each step to ensure you have an environment
where you can safely complete the hands-on labs that will appear at the end of
most chapters.

2.1 The operating system
While PowerShell is cross-platform for this book’s duration, we’ll primarily focus on
the Windows operating system because PowerShell is still prominently used on
Windows devices. You’ll first need a computer running Windows 10 or 11. You
could use a Windows 7 computer, but that’s out of support by now, so you should
probably upgrade if you can. While PowerShell is cross-platform, some of the exam-
ples we use are Windows specific, which is why we recommend following along on a
Windows machine. If you don’t own a Windows computer (maybe you’re a Mac or
Linux person), you can spin up a Windows 11 virtual machine (VM) in your favor-
ite cloud provider. Power it on when you need it, and turn it off when you’re done
with lunch for the day. You can also follow along with a Windows Server (2019 or
higher) if that’s what you have available.

10 CHAPTER 2 Setting up your scripting environment

2.2 PowerShell
It shouldn’t be surprising that you need PowerShell installed for the remainder of this
book. However, note that we’ll be using PowerShell 7, not the Windows PowerShell
(5.1) installed by default on your system. PowerShell 7 (which, from this point for-
ward, will be referred to as simply PowerShell) needs to be installed. If you followed
along with Learn PowerShell in a Month of Lunches, Fourth Edition (Manning, 2022), you
should have this installed already. Instructions on how to install PowerShell can be
found all over the internet, but here is a link to the official GitHub repository with the
latest installation instructions: https://github.com/PowerShell/PowerShell. You can
also use your favorite package manager such as Chocolatey or Winget. We don’t rec-
ommend installing a prelease, preview, or beta version. We’ll stick with PowerShell
7.2.x for this book as that is the long-term support version of PowerShell. You can fol-
low along with 7.3 or higher if you wish, and there shouldn’t be any problems.

2.3 Administrative privileges and execution policy
You need to ensure that you can run PowerShell As Administrator on your computer.
That might not be possible on a company-owned computer, so it’s worth checking.
First, start the PowerShell console (press Windows-R, type PowerShell, and press
Enter). If Administrator doesn’t appear in the window’s title bar, right-click the Power-
Shell icon in the taskbar, and select Run as Administrator. That should open a new
window that does display Administrator in the title bar (you may get a User Access Con-
trol prompt beforehand, which you’ll need to allow). If that doesn’t work, stop. You’ll
have difficulty following along with the examples in this book, and you need to resolve
your administrator access before proceeding.

 With the shell open as Administrator, run Get-ExecutionPolicy. This must return
something other than AllSigned, such as RemoteSigned, Unrestricted, or Bypass. If
it doesn’t, you can try running Set-ExecutionPolicy RemoteSigned. If that works,
you’re good to go. But if you get any errors or warnings, then your execution policy
probably won’t change, and you need to resolve that with your company’s IT team
before you can follow along with this book. Pop over to the forums on PowerShell.org
(https://forums.PowerShell.org/) if you need help figuring this out!

2.4 Script editors
You’re going to need a scripting editor to follow along with the examples and labs.
In 2017, Microsoft announced it would deprecate the Integrated Script Editor
(ISE), and PowerShell 7 doesn’t run in the ISE. We recommend (and will be using)
Microsoft’s free, cross-platform Visual Studio Code (VS Code). Head over to https://
code.visualstudio.com to download and install it. As always, we recommend you down-
load and install the latest stable release and not the preview or insider build. You can

https://github.com/PowerShell/PowerShell
https://forums.PowerShell.org/
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com

112.4 Script editors

use any editor you prefer, but for this book, we’ll be using VS Code, and we’ll assume
you are as well.

 Once you have VS Code installed, it will look similar to figure 2.1. We’ve changed
to the Light+ theme so you can see it when it’s printed.

Occasionally, you’ll find that VS Code has updated itself and wants to restart. Let it—
the update takes only a second, and it’s a good way to make sure you have the most sta-
ble release.

 Right away, you’ll want to install the extension that lets VS Code understand Power-
Shell. In the vertical ribbon on the left, the bottom icon provides access to VS Code’s
extensions. Selecting that should bring up a screen somewhat like the one in figure 2.2;
you’ll notice that we have several extensions already installed.

Figure 2.1 Opening VS Code

12 CHAPTER 2 Setting up your scripting environment

The PowerShell extension hasn’t been installed yet, so let’s install it. In the search bar,
enter PowerShell, as shown in figure 2.3. Click the PowerShell extension (make sure
it’s not the preview version), and then click Install.

 The PowerShell extension for VS Code is updated frequently, and you’ll get a noti-
fication in the bottom-right corner of the VS Code window. We always encourage you
to update the extension whenever a new release is available. Here are a few more use-
ful settings:

1 To easily find the settings.json file, open the Command Palate by clicking View
a Command Palette. For you keyboard junkies, you also can press Ctrl-Shift-P.

2 You can set the default file extension to PS1 by adding this to your settings.json
file: "files.defaultLanguage": "powershell" (the value powershell must be
in all lowercase).

3 We highly encourage you to add colors to your brackets. Add the following to
your settings.json file (this may already be enabled by default):

"editor.bracketPairColorization.enabled": true

Figure 2.2 The Extensions panel lets you install and manage VS Code add-ins.

132.5 Our lab environment

This book isn’t intended to be a tutorial on VS Code, of course, but as we go, we’ll point
out useful tips and tricks for working more efficiently with PowerShell in this editor.

NOTE We know a lot of you are still stuck with Windows PowerShell. Go
ahead if you’re bound and determined to use the PowerShell ISE and Win-
dows PowerShell (5.1). You’ll have a lot less functionality (even with stellar
add-ons such as ISESteroids), especially when it comes to debugging. At this
point, VS Code is the official editor for PowerShell, and we don’t know why
you wouldn’t want to use it, but it’s your computer!

2.5 Our lab environment
For this book, we have a lab setup of four machines with the following names and
operating systems:

 Srv01—Windows Server 2022
 Srv02—Windows Server 2022
 DC01—Windows Server 2022
 Client1—Windows 11

Figure 2.3 Installing the PowerShell extension

14 CHAPTER 2 Setting up your scripting environment

We suggest that you set up an environment similar to this if possible to make it easier
for you because your screen will look like the one used to run the examples and write
this book. There are a few options for creating your lab. Of course, if you can deploy
four VMs in a lab or dedicated space at work, that’s the best scenario. If you’re run-
ning Windows 10 or 11 Pro or Enterprise, you can enable Hyper-V and create a virtual
lab on your local machine. There are other free, open source, and paid versions to
create VMs on your local machine; pick one that is right for you.

 AutomatedLab was used to create the lab for this book. AutomatedLab is a free
and open source project that works great for our needs. The lab definition file is
included in the Resources folder of this book for your reference.

2.6 Example code
Finally, we strongly recommend that you download this book’s sample code. Manning
hosts it in a zip file on this book’s page: https://github.com/psjamesp/MOL-Scripting.
The file is organized by chapter; there’s a text file for everything formatted as a code
listing in the chapter. Later in the book, we’ll introduce some modules, which are also
organized under each chapter.

 You can download the Zip file from GitHub, or you can clone the repository to
your local computer. We suggest the clone so that you can always make sure you have
the updated files if we make any changes. As you look through the code samples,
you’ll see that the module names are repeated. That’s because subsequent chapters
build on what came before. We don’t necessarily expect you to import and use the
modules, although we’ll provide instructions to do so.

 Finally, so there are no misunderstandings, let’s be crystal clear that all the code
samples in the book are for educational purposes only. Nothing should be considered
ready for use in a production environment, even though you may be tempted.

2.7 Your turn
Take some time to make sure you’ve downloaded the sample code and successfully
installed VS Code and its PowerShell extension. If VS Code is working, you should be
able to save an empty file with a .ps1 filename extension and then, in the editor, type
something like Get-P. VS Code’s IntelliSense should kick in and offer to autocomplete
command names such as Get-Process for you. If that’s working, then you’re clear to
proceed. If not, stop here, and get it working. Again, we’ll keep an eye on the forums
at https://forums.PowerShell.org for questions; you’re welcome to drop by there if
you need help. Manning also has a great liveBook forum for this book (and many oth-
ers) that can also be a great resource.

Summary
As we wrap up this chapter on setting up your scripting environment, we must empha-
size key takeaways. Firstly, ensure an environment conducive to completing the hands-
on labs presented throughout this book. This includes having access to a Windows 10

https://forums.PowerShell.org
https://github.com/psjamesp/MOL-Scripting

15Summary

or 11 computer, preferably with administrative privileges, and PowerShell 7 installed.
Additionally, setting up Visual Studio Code (VS Code) as your scripting editor, along
with installing the PowerShell extension, will greatly enhance your scripting experience.

 Furthermore, we’ve provided insights into creating a lab environment similar to
ours, facilitating smoother navigation through the examples and exercises. Whether
deploying virtual machines locally or utilizing tools like AutomatedLab, having a lab
setup like ours will optimize your learning journey.

 Lastly, we stressed the importance of downloading the sample code provided with
this book and familiarizing yourself with VS Code’s features, such as IntelliSense.
Remember, the code samples are for educational purposes only, and caution should
be exercised before implementing them in a production environment. By ensuring
you have the necessary tools and resources, you’re now well-equipped to delve into
the exciting world of scripting with PowerShell. If you encounter any difficulties along
the way, don’t hesitate to contact the supportive communities available online for
assistance. Happy scripting!

16

WWPD: What would
PowerShell do?

Before we dive in, let’s have a quick conversation about the “right way” to do things
in PowerShell. One of PowerShell’s advantages—and one of its biggest disadvan-
tages—is that it’s pretty happy to let you take a variety of approaches when you
code. If you come from a VBScript background, PowerShell will let you write scripts
that look a lot like VBScript. If you’re a C# person, PowerShell will happily run
scripts that strongly resemble C#. But PowerShell is neither VBScript nor C#; if you
want to take advantage of PowerShell and let it do as much heavy lifting for you as
possible, you must understand the PowerShell way of doing things. We’ll harp on
this a lot in this book, starting here. But it’s also important to keep in mind that just
because we do things a certain way, that doesn’t mean it’s the only way—it’s just the
way we prefer to do things. We generally follow the community’s best practices
when it comes to scripting.

 Think of it this way: a car is useful for getting from point A to point B, but
there are many different ways in which you could do so. You could, for example,
put the car in neutral, get out, and push it to point B. You could walk, ride a bike,
or take the bus. Or, you could hitch a horse to the car and let the horse pull it.
Horses have been a great approach to transportation for centuries, so why
change? But the most efficient way is to use the car as it was meant to be used: fill
it with gas, get in, and step on the accelerator. You’ll go faster than the horse
could, you’ll expend less effort than you would by pushing, and you’ll be a hap-
pier, healthier traveler overall.

 That’s what we want to do with PowerShell. Unhitch the horse, get in the car,
and go.

173.1 One tool, one task

3.1 One tool, one task
Be sure to pay attention to what you see in figure 3.1 because it’s the most critical rule
you need to learn in the book.

PowerShell is predicated on using small, single-purpose tools (you know them as
cmdlets and functions) that you can string together in a pipelined expression to
achieve amazing results with minimal effort. If you come from another programming
or scripting background, you know how long the code can be for some commands.
The Sort-Object command alone can be tens of lines long in some languages. For
instance, here’s how you’d write that command:

Get-ciminstance win32_logicaldisk -filter 'drivetype=3' `
" -computername SRV1| Select PSComputername,DeviceID,`
" Size,FreeSpace | Select-Object FreeSpace

It would be best to embrace this golden rule in your toolmaking endeavors. This is so
critical that you’ll see this more than once, we can promise. Please don’t try to create
one gigantic script that does a dozen different things. Write small, single-purpose
tools that do one thing and do it very well. The tools you create should act and behave
no differently than any other PowerShell command you get out of the box.

The single-task tool rant
A lot of folks have a hard time with the “single-task tool” principle. We get it—it’s a
new concept to many people, and it’s hard to adjust to it. Chapter 17 will focus on
some before-and-after examples to help make the point even clearer, but we want to
say something specific about it now.

It’s easy to think, for example, that provisioning a new user is a single task, but, no,
it isn’t. It’s a process, and if you think about how you’d perform it manually, you’d
instantly realize that it consists of multiple tasks. You have to create the user, set
up a home folder, assign a Microsoft 365 (M365) license, create a mailbox, create
a user library in SharePoint, and so on. Were you to start coding the process, you’d
create a tool for each task: new user, new home folder, M365 tasks, SharePoint
account, and so forth (many of those tasks can be accomplished using tools Microsoft

1

Figure 3.1 The single, most important
rule you need to remember

18 CHAPTER 3 WWPD: What would PowerShell do?

3.2 Naming your tools
We’ll cover quite a few hot topics in this book. If you browse the PowerShell forums
(https://forums.PowerShell.org) or talk to anyone in any of the PowerShell Slack or
Discord channels, you’ll find people who will stand their ground and argue with you
on the “correct” way to write code. That’s usually fine; their way isn’t wrong, and every-
one has a valid opinion. That’s one of the beauties of PowerShell being open source
and community driven. There are multiple ways to do things. Just because we show
one way to do something in this book doesn’t mean it’s the only way. It’s just how we
feel is the best way to do things.

 When it comes to naming your tools, what naming convention should you use? A
tool named ListAllIISWebServersInTheIISWebFarm is self-explanatory but doesn’t
fit into the PowerShell model. As discussed in the previous book Learn PowerShell in a
Month of Lunches, Fourth Edition, PowerShell follows a Verb-Noun naming syntax.

TRY IT NOW Run the command Get-Verb, and look at the output.

 For the noun, always use a singular noun, for example, User as opposed to Users.
 Prefix the noun with something meaningful to your company (never us “PS”).

If your company name is Globalmantics, then your tool could be called Get-
GlobalUser.

 Start with a verb—but not just any verb as PowerShell has a list of approved
verbs. (These “approved” verbs are more like suggestions because you can actu-
ally use any verb, but let’s stick with the approved ones.) The PowerShell team
does occasionally add new verbs to the list.

We are so picky here because PowerShell has a lot of code built around this naming
convention and the specifically approved verbs. Get-Command, for example, under-
stands the difference between a verb and a noun and can help locate commands

(continued)
has already written). You’d then “connect” those tools into a process by writing a con-
troller script. We’ll cover those later in the book.

Even something as simple as writing information to a CSV file is a single task (and
PowerShell has a tool that does that). If you have a script that produces new informa-
tion and takes the time to format it as a CSV and write it to a file, you’re not only
doing it wrong, you’re also working too hard.

From this point on, start thinking about making things smaller. For any given process
that you need to automate, ask yourself these questions: What are the smallest units
of work you can create to accomplish each task? Can anything be made smaller or
broken into multiple discrete pieces? This is the essence of toolmaking. We do this
for two reasons. The first is to make our code reusable so that we’re not reinventing
the wheel repeatedly, and the second is for speed.

https://forums.PowerShell.org

193.3 Naming parameters

based on either. As another example, Import-Module knows the approved verb list and
issues warnings when you attempt to load unapproved verbs. Perhaps most impor-
tantly, all the cool kids in the PowerShell community will chuckle at you for using
improperly constructed command names.

 You can easily find the full list of approved verbs by running the Get-Verb com-
mand, or you can go to http://mng.bz/VRzr.

3.3 Naming parameters
Believe it or not, parameter naming is just as important (some may say even more
important) than command naming. As you’ll learn, parameter naming is key to
enabling commands to connect to each other in the pipeline. Parameter naming is
also crucial for command discovery by using Get-Command.

When deciding on a parameter name, focus on the core, native PowerShell commands
(rather than add-in modules such as Active Directory). What would they use in the same
situation? Core commands invariably use –ComputerName rather than an alternative
such as –Host, –MachineName, or something else. Here are a couple more examples:

1 Core commands are a bit inconsistent here, but most use either –FilePath or –Path.
We’d use a command like Out-File, which uses –FilePath, as our exemplar.

2 The core remoting commands, such as Invoke-Command, perform this task, and
they do so using a –PSSession parameter.

Wondering if a parameter name is a good choice? Use PowerShell to see if other com-
mands are using it:

get-command -CommandType Cmdlet -ParameterName ComputerName

If you don’t find a match, that doesn’t mean you shouldn’t use it, but there might be a
better alternative.

 The idea is to be consistent. Again, you’ll see how this becomes crucial when wiring
up commands so that they can connect in the pipeline. A lot of under-the-hood stuff
relies on consistent parameter naming, so don’t think you’ve got a great reason to
diverge from the norm.

Quiz Time
1 If you write a command that can connect to remote computers, what parame-

ter name will accept those remote computer names or addresses?
2 If you write a command that can output a data file, what parameter name will

accept the file location and name?
3 What parameter name might accept the session object to use if you write a

command that can work over an existing PowerShell remoting session?

You may need to research a bit to answer these quiz questions—and that’s the point.

http://mng.bz/VRzr

20 CHAPTER 3 WWPD: What would PowerShell do?

3.4 Producing output
Output is an area where observing PowerShell’s native approach can be misleading
because a lot goes on under the hood with PowerShell output. If you’ve read our book
Learn PowerShell in a Month of Lunches, Fourth Edition (Manning, 2022), then you know
some of this; if you haven’t, we heartily recommend you do so. But in brief, here’s
what you need to know about PowerShell output:

1 PowerShell commands produce objects as output as you’ll learn in this book.
Objects are a form of structured data, not unlike an Excel spreadsheet. An
object represents a row in the sheet, and each column is essentially a property of
the object. By referring to the property names, you can access their contents.
Structured data output—objects—are at the deep core of what PowerShell is. If
you ignore this maxim, your PowerShell experience will be miserable.

2 Objects are output and placed into the PowerShell pipeline, which ferries the
objects to the next command in the pipeline. Therefore, commands need to,
in many cases, accept input from the pipeline so that they can work in this
execution model. You can continue this process for as long as you need. But
realize that objects may change in the pipeline depending on what cmdlets
you’re using.

3 When the last command has output its objects to the pipeline, the pipeline car-
ries the objects to the formatting system. At this point, the objects are still just
structured data. Their properties don’t appear in any particular order and
aren’t explicitly destined to be displayed in any particular way.

4 The formatting system, through a fairly complex set of rules we covered in
Learn PowerShell in a Month of Lunches, Fourth Edition (Manning, 2022), decides
how to draw an onscreen display for the objects. This involves deciding to dis-
play a list or a table, coming up with column headers, and so on.

5 The result of the formatting system is a bunch of specialized formatting direc-
tives, meaning the original structured data is gone. These directives are useful
only for drawing an onscreen display or sending an equivalent to a text file, a
printer, or an output device.

Your tools shouldn’t be doing any work in steps 4 or 5. That is, you should focus on
outputting useful, structured data in the form of objects—and explicitly not worry
about the onscreen results. We can’t tell you how many people we’ve seen bang their
heads against their desks trying to create “attractive” output. We’ll show you how to do

Quiz Time
1 Why do you think using the parameter -Host is a bad idea?

a When using Invoke-Command or Enter-PSSession, we can use -Computer-
Name or -hostname. ComputerName uses Windows Remote Management
(WinRM) and Hostname uses SSH to connect to the remote machine.

213.5 Don’t assume

that the PowerShell way, which essentially involves educating the formatting system that
fires off in step 4. But for your tools, focus on getting the right data into the output,
and don’t worry about what that will look like on the screen.

3.5 Don’t assume
We’ve spent years teaching, writing, and speaking about PowerShell to IT profession-
als all over the world. If there’s one constant challenge we see people encounter, it’s
making assumptions about what PowerShell is and how it should behave. As the
ancient Greek philosopher Epictetus said, “It is impossible for a man to begin learn-
ing what he thinks he knows.”

 You’ll recognize many patterns as you work with PowerShell, especially if you have
other programming or scripting experience. That is to be expected. When PowerShell
was being developed, the product team looked at many languages to adopt ideas and
principles that fit the paradigm they were building. (Check out Don Jones’s book,
Shell of an Idea (2020), if you want to know more about the history of how PowerShell
was developed.) But just because you recognize something that looks like Python,
don’t assume it will behave like Python. We find that those who approach PowerShell
thinking they can treat it like some other language they know are the most frustrated.
Here are some things to keep in mind:

 Although PowerShell has a rich and robust pipeline, it isn’t Bash. PowerShell’s
pipeline works completely differently.

 Although running a command may produce a certain kind of onscreen output,
that doesn’t mean that’s all the command produced. PowerShell’s “visuals”
don’t always correspond exactly with its “internals.”

 Although PowerShell has scripting constructs such as If and ForEach, it isn’t a
full programming language. If you approach it as one, you’ll likely work at
cross-purpose with the shell.

 Although PowerShell uses .NET Framework for much of its functionality, Pow-
erShell isn’t C#. PowerShell has become more programming language-ish over
the years, but there are still times when the right answer is “Just do it in C#.” You
could be at that point if you find yourself writing almost entirely in .NET classes
and not in PowerShell commands.

Perhaps the most important tip is to try not to drag your past experiences into Power-
Shell too much. PowerShell isn’t VBScript, Perl, Python, KiXtart, or batch; the more
you try to treat it like those things, the more you’re going to struggle and be frus-
trated. Don’t try to force PowerShell to meet some preconceptions you might have.
PowerShell is its own thing. Learn PowerShell in a Month of Lunches, Fourth Edition should
have prepared you for how PowerShell wants to be used. Similarly, this book will pre-
pare you to extend the shell the way it wants to be extended.

22 CHAPTER 3 WWPD: What would PowerShell do?

3.6 Avoid innovation
We’ll end this chapter with this related piece of advice: don’t try to invent new ways of
doing things. I’m sure you’re thinking, “Isn’t the whole point of this book to make your
own scripts?” Yes, it is, but you’re not the first person in the world to ever have your
problem, we promise. The whole strength of PowerShell—quite literally the entire
reason for its existence—is to create a consistent administrative surface from a sea of
chaos. Don’t contribute to the chaos by coming up with a novel approach. Even if you
think Microsoft missed the boat on this one and you’ve got a much better way of
doing something, stop thinking that way. The goal of creating tools in PowerShell isn’t
to do it better than Microsoft—it’s to remain consistent with what has come before.

Summary
All we’re trying to stress in this chapter is that you need to take the time to observe
how PowerShell approaches problems and try to emulate its approaches, rather than
invent your own. Your results will become more comprehensible to others, require
less effort on your part, and form a much more consistent solution within the shell.

 Unlike a car, which you’ve observed in everyday life—presumably noticing the lack
of an attached horse—PowerShell’s approach isn’t always obvious. Worse, it isn’t
always consistent because many different people, even inside Microsoft, have declined
to follow our advice from this chapter. It’s worth the time to research a bit, especially
the core commands provided by the PowerShell team, to discover PowerShell’s
approach and emulate it as best you can.

But contribute
We don’t want to stifle you. Make your voice heard if you have a great idea or sugges-
tion about how Microsoft can do something better.

PowerShell is now an open source project on GitHub (https://github.com/PowerShell/
PowerShell). Have an idea? Post an issue. Even better, fork the GitHub repository,
develop the improvement, and submit a pull request. You can have a say in what
future versions of PowerShell look like!

https://github.com/PowerShell/PowerShell
https://github.com/PowerShell/PowerShell
https://github.com/PowerShell/PowerShell

23

Review:
Parameter binding and
the PowerShell pipeline

Take traditional pipeline behavior from shells like Bash and Cmd.exe, mix in Power-
Shell’s unique object-oriented nature, and add a dash of Linux-style command
parsing. The result is PowerShell’s pipeline, a fairly complex and deeply powerful
tool for composing tools into administrative solutions. Our goal is to turn you from
a scripter into a toolmaker; to do so, you must understand the pipeline at its most
basic level and create tools that take full advantage of the pipeline. Although we
covered these concepts in Learn PowerShell in a Month of Lunches, Fourth Edition (Man-
ning, 2022), we’ll go deeper in this chapter and focus on the pipeline as something
to write for, rather than just use.

4.1 The operating system
Let’s start with a little practice exercise. Grab a sheet of paper (or a tablet you can
write on), and draw something similar to what you see in figure 4.1. Now, write some
command names in those boxes: maybe Get-Process in the first box, ConvertTo-
HTML in the second box, and Out-File in the third box.

TRY IT NOW Go on—draw the boxes. We could have just repeated the fin-
ished figure here in the book, and believe us, our editor wanted us to, but
there’s value in you doing this physical thing for yourself.

Figure 4.1 Visualizing the pipeline

24 CHAPTER 4 Review: Parameter binding and the PowerShell pipeline

This exercise may have seemed a bit silly, but this is an excellent visual depiction of
how PowerShell runs commands in the pipeline: as one command produces objects,
they go into the pipeline one at a time and get passed on to the next command. At the
end of the pipeline, when there are no further commands, any objects in the pipeline
are passed to PowerShell’s formatting system to be formatted for onscreen display.

 The pipe symbols (|) in our diagram are concealing a great deal of under-the-hood
functionality, which is important to understand. It’s easy enough to say that Power-
Shell passes the objects from one command into the next, but how does that happen?

4.2 It’s all in the parameters
PowerShell uses two methods to figure out how to get data—objects—dynamically out
of the pipeline and “into” a command on the other side of the pipe. Both of these
methods rely on the accepting command’s parameters. In other words—and this is
important—the only way a command can accept data is via its parameters. This implies
that when you design a command and when you design its parameters, you’re decid-
ing how that command will accept information, including how it will accept informa-
tion from the pipeline. This process is, therefore, not magic; it’s a science that is
determined in advance by whoever designed the command.

 It can look like magic, though. Consider this:

Get-Service | Where Status –eq "Running" | ConvertTo-HTML |
Out-File stats.html

We don’t want you to go further than this chapter until you understand why that com-
mand works. Start by embracing that all commands only get their input by using
parameters. Period. No exceptions. Full stop. The problem is that a lot of the time,
you’re not typing parameter names. Instead, PowerShell lets you use positional parame-
ters, where the order of the values you provide implies the parameters those values get
fed to. To dispel the magic, it’s helpful to rewrite the command with every parameter
spelled out in full:

Get-Service | Where-Object –Property Status –eq –Value "Running" |
ConvertTo-HTML

That Where-Object command is particularly interesting. We’ve used three parame-
ters: -Property, the eq operator (which needs no value because it’s an operator), and
–Value. You’ll never see this written out this way in the real world, but writing it out is
a helpful way to understand that everything the command is doing is coming from
parameters.

 The last piece of the magic is how the pipeline carries objects of data from one
command to another. For that, PowerShell has two techniques it can use: ByValue and
ByPropertyName.

254.3 Pipeline: ByValue

4.3 Pipeline: ByValue
PowerShell has a hardcoded preference to pass entire objects from the pipeline into a
command. Because of that hardcoded preference, it will always attempt to pass entire
objects before it tries to do anything else. To do so, the following must be true:

 The accepting command must define a parameter that supports accepting pipe-
line input ByValue.

 That parameter must be capable of accepting whatever type of object happens
to be in the pipeline.

For example, refer to your diagram with Get-Process in the first block. What kind
of object does that command produce? In PowerShell, try running Get-Process |
Get-Member—the first line of output will contain the TypeName, which identifies the
kind of object that the command produced. Turns out, it’s a System.Diagnostics
.Process object.

 Now, peruse the help for the second command we suggested. You’ll want to first
make sure you’ve run Update-Help to have help files, and then run Help ConvertTo-
HTML –ShowWindow to explore the complete help. Do you see any parameters of the
command that are capable of accepting a [Process] object? Don’t worry, you didn’t
miss one because one doesn’t exist.

 You probably do see a parameter capable of accepting an [Object] (or [Object[]]),
right? In the Microsoft .NET Framework, System.Object is like the mother type for
everything else. That is, everything inherits from the Object type. PSObject (i.e., Power-
Shell Object) is more or less equivalent to Object in PowerShell. So, whenever you see
that a parameter accepts PSObject, you know that it can accept basically anything. In
the help for ConvertTo-HTML, you’ll find an –InputObject parameter, which fulfills
our two criteria:

 It can accept pipeline input using the ByValue technique.
 It can accept objects of the type System.Diagnostics.Process because it can

accept the more generic PSObject.

Therefore, PowerShell will take the output of Get-Process and attach it to the
–Input-Object parameter of ConvertTo-HTML. Reading the help for the second com-
mand, that parameter “specifies the objects to be represented in HTML.” So, anything
you pipe into ConvertTo-HTML will be captured, ByValue, through the –InputObject
parameter, and will be presented in HTML format.

4.3.1 Introducing Trace-Command

The pipeline can still be a bit tricky and hard to understand at first as it’s a tough con-
cept. Lucky for us, PowerShell has a built-in way for you to see this passing-of-the-objects
process happening called Trace-Command. It’s a really useful way to debug pipeline
parameter binding and will show you, in detail, the decisions PowerShell is making and
the actions it’s attempting to take. To run the command, you’ll run something like

26 CHAPTER 4 Review: Parameter binding and the PowerShell pipeline

Trace-Command –Name Parameterbinding –Expression { Your command goes here }
–PSHost. Keep in mind that your command will actually run, so you need to be careful
not to run anything that could be damaging, such as deleting a bunch of user accounts
or deleting everyone’s home folder, just to see what happens! This isn’t a replacement
of -Whatif.

TRY IT NOW Open up PowerShell, run the following command, and look at
the output:

 Trace-Command -Name ParameterBinding -Expression {get-process |
 select -first 1} -PSHost

4.3.2 Tracing the ByValue parameter binding

Let’s apply Trace-Command to the current example. Here’s the command we ran, which
you should run too:

PS C:\> trace-command -Expression { get-process | convertto-html |
out-null } -Name ParameterBinding -PSHost

You’ll notice that we ended our command with Out-Null; we did that to suppress the
normal output of ConvertTo-HTML to keep the output a little cleaner. You will, how-
ever, see PowerShell dealing with getting objects from ConvertTo-HTML into Out-Null,
so it’s a useful illustration.

 You’ll first see PowerShell attempt to bind—that is, attach—any NAMED arguments
for Get-Process. There weren’t any—that is, we didn’t specify any—parameters man-
ually in our command:

DEBUG: ParameterBinding Information: 0 : BIND NAMED cmd line args
[Get-Process]

PowerShell next looks for POSITIONAL parameters, which we also didn’t have. Power-
Shell then checks to make sure that all the command’s MANDATORY parameters have
been provided, and we pass that check. Here’s what you’ll see:

DEBUG: ParameterBinding Information: 0 : BIND POSITIONAL cmd line args
[Get-Process]
DEBUG: ParameterBinding Information: 0 : MANDATORY PARAMETER CHECK on
cmdlet [Get-Process]

This entire process—named, positional, and then a mandatory check—repeats for the
ConvertTo-HTML and Out-Null commands. This is an essential lesson: regardless of
how a command is wired up to accept pipeline input, specifying named or positional
parameters always takes precedence because PowerShell binds those first. If we’d man-
ually specified –InputObject, for example, then we’d have prevented the ByValue
parameter binding from working because we’d have “bound up” the parameter our-
selves before ByValue was even considered. Here’s what you’ll see:

274.3 Pipeline: ByValue

DEBUG: ParameterBinding Information: 0 : BIND NAMED cmd line args
[ConvertTo-Html]
DEBUG: ParameterBinding Information: 0 : BIND POSITIONAL cmd line args
[ConvertTo-Html]
DEBUG: ParameterBinding Information: 0 : MANDATORY PARAMETER CHECK on
cmdlet [ConvertTo-Html]
DEBUG: ParameterBinding Information: 0 : BIND NAMED cmd line args
[Out-Null]
DEBUG: ParameterBinding Information: 0 : BIND POSITIONAL cmd line args
[Out-Null]
DEBUG: ParameterBinding Information: 0 : MANDATORY PARAMETER CHECK on
cmdlet [Out-Null]

Next, PowerShell calls the BEGIN code for each of the three commands. This is code
that is executed once before any pipeline objects are processed. Not all commands
specify any BEGIN code, but PowerShell gives them all the opportunity. Here’s what
you’ll see:

DEBUG: ParameterBinding Information: 0 : CALLING BeginProcessing
DEBUG: ParameterBinding Information: 0 : CALLING BeginProcessing

The next bit is a little surprising because PowerShell is attempting to bind a pipeline
object to a parameter of Out-Null. Here’s what you’ll see:

DEBUG: ParameterBinding Information: 0 : BIND PIPELINE object to
parameters: [Out-Null]

How the heck did anything even get into the pipeline at this point? Well, the previous
command, ConvertTo-HTML, has clearly taken the opportunity to produce some out-
put from its BEGIN code—sneaky. PowerShell now has to deal with that, even though
the first command, Get-Process, hasn’t even run yet!

 Then, comes something interesting. Here’s what you’ll see:

DEBUG: ParameterBinding Information: 0 : PIPELINE object TYPE =
[System.String]
DEBUG: ParameterBinding Information: 0 : RESTORING pipeline
parameter's original values

PowerShell identifies the type of object in the pipeline as a System.String. Take a
minute and read the full help for Out-Null. Do you see any parameters capable of
accepting a String from the pipeline using the ByValue method?

 PowerShell is about to discover that the –InputObject parameter of Out-Null
accepts either Object or PSObject, so it’s going to bind the output of ConvertTo-HTML
to that –InputObject parameter:

DEBUG: ParameterBinding Information: 0 : Parameter
[InputObject] PIPELINE INPUT ValueFromPipeline NO COERCION
DEBUG: ParameterBinding Information: 0 : BIND arg [<!DOCTYPE
html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

28 CHAPTER 4 Review: Parameter binding and the PowerShell pipeline

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">] to parameter
[InputObject]
DEBUG: ParameterBinding Information: 0 : BIND arg
[<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">] to param
[InputObject] SUCCESSFUL

In fact, it appears to have accepted a couple of String objects from the pipeline.
These look like header lines for an HTML file, which makes sense—ConvertTo-HTML

probably gets these out of the way as boilerplate before it settles down to its real job.
 Next, we see that the MANDATORY check on Out-Null succeeds, and we continue to

deal with initial boilerplate issued by ConvertTo-HTML:

DEBUG: ParameterBinding Information: 0 : MANDATORY PARAMETER CHECK
on cmdlet [Out-Null]
DEBUG: ParameterBinding Information: 0 : BIND PIPELINE object to
parameters: [Out-Null]
DEBUG: ParameterBinding Information: 0 : PIPELINE object TYPE =
[System.String]
DEBUG: ParameterBinding Information: 0 : RESTORING pipeline
parameter's original values
DEBUG: ParameterBinding Information: 0 : Parameter
[InputObject] PIPELINE INPUT ValueFromPipeline NO COERCION
DEBUG: ParameterBinding Information: 0 : BIND arg [<html
xmlns="http://www.w3.org/1999/xhtml">] to parameter [InputObject]
DEBUG: ParameterBinding Information: 0 : BIND arg [<html
xmlns="http://www.w3.org/1999/xhtml">] to param [InputObject]
SUCCESSFUL

Let’s skip ahead a bit, past all the boilerplate “header” HTML. We’ll go down to the
point where Get-Process runs and where PowerShell recognizes the type of object it
has produced:

DEBUG: ParameterBinding Information: 0 : BIND PIPELINE object to
parameters: [ConvertTo-Html]
DEBUG: ParameterBinding Information: 0 : PIPELINE object TYPE =
[System.Diagnostics.Process#HandleCount]

Next, we’ll see those Process objects being bound to the –InputObject parameter of
ConvertTo-HTML:

DEBUG: ParameterBinding Information: 0 : Parameter [InputObject]
PIPELINE INPUT ValueFromPipeline NO COERCION
DEBUG: ParameterBinding Information: 0 : BIND arg
[System.Diagnostics.Process] to parameter [InputObject]
DEBUG: ParameterBinding Information: 0 : BIND arg
[System.Diagnostics.Process] to param [InputObject] SUCCESSFUL

The trace output goes on, of course, but this is what we were looking for: proof that
PowerShell is doing what we expected. You’ll notice the phrase NO COERCION quite a
bit in the preceding; that’s an indication that PowerShell was able to bind the output

294.4 ByPropertyName

as is, without trying to convert it to something else. Coercion is one of the things that
can make pipeline parameter binding more confusing, and it’s what this trace output
can help you see and understand. For example, PowerShell is capable of coercing, or
converting, a number into a string so that the resulting string can bind to a parameter
that accepts String.

4.3.3 When ByValue fails

That was pretty in-depth for ByValue, but what do we do when that fails? Go back to
your paper diagram. Erase or cross out ConvertTo-HTML and Out-Null, and, in the
second box, write Stop-Service. Don’t run the resulting command yet—we need to
talk about what happens.

 You know that the first command produces Process objects. Examining its full help
file, do you see any parameters of Stop-Service that will do both of the following?

 Accept pipeline input ByValue
 Accept an input type of Process, Object, or PSObject

We don’t see any parameters that fit the criteria, so the ByValue method fails. What do
we do now?

4.4 ByPropertyName
You may notice one parameter of Stop-Service that accepts pipeline input ByProperty-
Name: specifically, the –Name parameter. That parameter does accept ByValue, but we’ve
moved past that—it’s the ByPropertyName part that interests us now. Here’s what it
means: because the parameter is spelled N A M E, PowerShell will look at the objects in
the pipeline to see if they have a property spelled N A M E. If they do, PowerShell will
take the values from the property and feed them to the parameter—just because
they’re spelled the same.

 Try using Trace-Command to run Get-Process | Stop-Service –whatif (we
included –whatif just to prevent any possibility of something going wrong). Can you
see how PowerShell attempts to bind the object’s Name property to the command’s
–Name parameter?

 PowerShell will try to “pair” as many properties and parameters as it can. If the
object in the pipeline has properties named Name, ID, Description, and Status, and
the next command in the pipeline has parameters named –Name and –Status, then two
of the object’s properties will bind to parameters (assuming that –Name and –Status
were both programmed to accept pipeline input ByPropertyName). This can be a
really useful technique. For example, suppose you have a CSV file named Users.csv
that contains columns named samAccountName, Name, Title, Department, and City.
Looking at the help file for New-ADUser (Get-Help New-Aduser -Online if you don’t
have the Active Directory module installed), what do you think would happen if you
ran this?

Import-CSV Users.csv | New-ADUser

30 CHAPTER 4 Review: Parameter binding and the PowerShell pipeline

Give it some thought. If you have a test domain that you can play with, go ahead and
create a CSV like that, and fill in a few rows’ worth of user information for made-up
users that don’t exist. Run the command, and see if it does what you expect.

4.4.1 Let’s trace ByPropertyName

Consider another example of ByPropertyName binding, and look at the portions of a
trace where the binding happens. Here’s our command (we’re limiting Get-Process
to retrieving processes whose names begin with the letter O because we know we only
have one such process, and it will make the output shorter):

PS C:\> trace-command -Expression { Get-Process -Name o* |
Stop-Job } -PSHost -Name ParameterBinding

Let’s see what happens. First, we run through the parameter binding for Get-Process.
This time, we do have a NAMED parameter, -Name, to which we’ve provided the value o*.
There’s a problem, though, in that the parameter wants an array of strings—shown as
[string[]] in its help file—and we’ve provided only one. PowerShell therefore cre-
ates an array, adds our o* to it, and attaches that one-item array to the parameter:

DEBUG: ParameterBinding Information: 0 : BIND NAMED cmd line args
[Get-Process]
DEBUG: ParameterBinding Information: 0 : BIND arg [o*] to parameter
[Name]
DEBUG: ParameterBinding Information: 0 : COERCE arg to [System.String[]]
DEBUG: ParameterBinding Information: 0 : Trying to convert
argument value from System.String to System.String[]
DEBUG: ParameterBinding Information: 0 : ENCODING arg into collection
DEBUG: ParameterBinding Information: 0 : Binding collection parameter Name:
argument type [String], parameter type
[System.String[]], collection type Array, element type [System.String],
coerceElementType
DEBUG: ParameterBinding Information: 0 : Creating array with element type
[System.String] and 1 elements
DEBUG: ParameterBinding Information: 0 : Argument type String is not IList,
treating this as scalar
DEBUG: ParameterBinding Information: 0 : COERCE arg to System.String]
DEBUG: ParameterBinding Information: 0 : Parameter and arg types the same,
no coercion is needed.
DEBUG: ParameterBinding Information: 0 : Adding scalar element of type
String to array position 0
DEBUG: ParameterBinding Information: 0 : Executing VALIDATION metadata:
[System.Management.Automation.ValidateNotNullOrEmptyAttribute]
DEBUG: ParameterBinding Information: 0 : BIND arg [System.String[]] to
param [Name] SUCCESSFUL

Next is the usual check for POSITIONAL parameters, followed by a MANDATORY check:

DEBUG: ParameterBinding Information: 0 : BIND POSITIONAL cmd line args
[Get-Process]
DEBUG: ParameterBinding Information: 0 : MANDATORY PARAMETER CHECK on
cmdlet [Get-Process]

314.4 ByPropertyName

Now we start in on the Stop-Job command, handling NAMED, POSITIONAL, and MANDATORY
again:

DEBUG: ParameterBinding Information: 0 : BIND NAMED cmd line args
[Stop-Job]
DEBUG: ParameterBinding Information: 0 : BIND POSITIONAL cmd line args
[Stop-Job]
DEBUG: ParameterBinding Information: 0 : MANDATORY PARAMETER CHECK on
cmdlet [Stop-Job]

PowerShell then gives each of the two commands a chance to run any BEGIN code that
they may contain:

DEBUG: ParameterBinding Information: 0 : CALLING BeginProcessing
DEBUG: ParameterBinding Information: 0 : CALLING BeginProcessing

The only process returned, in our case, is one named OSDUIHelper, and it appears
next in the trace output:

DEBUG: ParameterBinding Information: 0 : BIND arg
[System.Diagnostics.Process (OSDUIHelper)] to parameter [Job]

Let’s see what PowerShell does with that because we’re pretty sure ByValue won’t work:

DEBUG: ParameterBinding Information: 0 : Binding collection parameter Job:
argument type [Process], parameter type
[System.Management.Automation.Job[]], collection type Array, element
type [System.Management.Automation.Job], no coerceElementType
DEBUG: ParameterBinding Information: 0 : Creating array with element type
[System.Management.Automation.Job] and 1 elements
DEBUG: ParameterBinding Information: 0 : Argument type Process is not
IList, treating this as scalar
DEBUG: ParameterBinding Information: 0 : BIND arg
[System.Diagnostics.Process (OSDUIHelper)] to param [Job] SKIPPED

That SKIPPED portion at the end (bolded in the output) is what tells us ByValue ulti-
mately didn’t work out. PowerShell tried! The –Job parameter of Stop-Job accepts
input ByValue, so PowerShell gave it a shot. The parameter expects one or more
objects of the type Job, so PowerShell created an array and added to it our OSDUI-
Helper object, which is of the type Process. But it couldn’t do anything to make a
Process into a Job, so it gave up. Time for plan B:

DEBUG: ParameterBinding Information: 0 : Parameter [Id] PIPELINE
INPUT ValueFromPipelineByPropertyName NO COERCION
DEBUG: ParameterBinding Information: 0 : BIND arg [5248] to parameter [Id]
DEBUG: ParameterBinding Information: 0 : Binding collection parameter Id:
argument type [Int32], parameter type [System.Int32[]],
collection type Array, element type [System.Int32], no coerceElementType
DEBUG: ParameterBinding Information: 0 : Creating array with element type
[System.Int32] and 1 elements
DEBUG: ParameterBinding Information: 0 : Argument type Int32 is not IList,

32 CHAPTER 4 Review: Parameter binding and the PowerShell pipeline

treating this as scalar
DEBUG: ParameterBinding Information: 0 : Adding scalar element of type
Int32 to array position 0
DEBUG: ParameterBinding Information: 0 : Executing VALIDATION metadata:
[System.Management.Automation.ValidateNotNullOrEmptyAttribute]
DEBUG: ParameterBinding Information: 0 : BIND arg [System.Int32[]] to param
[Id] SUCCESSFUL
DEBUG: ParameterBinding Information: 0 : MANDATORY PARAMETER CHECK on
cmdlet [Stop-Job]

The Process object has an ID property, and the –Id parameter of Stop-Job accepts
pipeline input ByPropertyName. The property contains, and the parameter accepts,
an integer, although the parameter wants an array of them. So, PowerShell creates a
single-item array, adds our ID of 5248 to it, and attaches it to –Id. It works! Well, it sort
of works. We know, and you’ve probably guessed, that Stop-Job is expecting the ID
number of a job, whereas we’re providing the ID number of a process—not quite the
same thing. It’s like trying to use your house number as a phone number: they’re
both numbers, but they refer to different kinds of entities. That’s why we eventually
get an error:

Stop-Job : The command cannot find a job with the job ID 5248. Verify
the value of the Id parameter and then try the command again.
At line:1 char:52
+ trace-command -Expression { Get-Process -Name o* | Stop-Job } -PSHost ...
+ CategoryInfo : ObjectNotFound: (5248:Int32) [Stop-Job],
PSArgumentException
+ FullyQualifiedErrorId : JobWithSpecifiedSessionNotFound,Microsoft.
PowerShell.Commands.StopJobCommand

The trace output, should you care to try this on your own (and you should!), shows
PowerShell attempting to construct the error message record that eventually appears
onscreen, which is a fairly arduous process that involves a few dozen more lines of
trace output. Trace-Command can be a handy cmdlet for troubleshooting, so take the
time to read the full help and examples.

4.4.2 When ByPropertyName fails

What if you get into a situation where you have an object in the pipeline and a com-
mand ready to receive it, but neither ByValue nor ByPropertyName works? It’s entirely
possible—the command may not be able to do anything with the type of object in the
pipeline, for example, or may not accept pipeline input at all. This should be rare,
and we created a simple PowerShell command to demonstrate:

PS C:\> "frances" | set-foo
set-foo : The input object cannot be bound to any parameters for the
command either because the command does not take
pipeline input or the input and its properties do not match any of the
parameters that take pipeline input.
At line:1 char:13

33Summary

+ "frances" | set-foo
+ ~~~~~~~
 + CategoryInfo : InvalidArgument: (frances:String) [Set-Foo],
ParameterBindingException
 + FullyQualifiedErrorId : InputObjectNotBound,Set-Foo

As you can see, the entire pipeline will fail. Because the objects can’t be passed into the
command and PowerShell doesn’t want to just discard the pipeline objects, it will
throw an error message and quit running.

4.4.3 Planning ahead

Let’s consider a key principle when developing your tools, especially those leveraging
parameter binding. Ideally, you should designate only one parameter to accept pipe-
line input by value. Imagine having two parameters, Foo and Bar, designed for input
by value. If you execute the command as Get-content data.txt | get-magic, it
becomes unclear whether incoming values should go to -Foo or -Bar. PowerShell
lacks the means to determine this, emphasizing the importance of having only one
parameter for value input. Although having multiple such parameters using parame-
ter sets is technically possible, it’s a more advanced concept.

 On the other hand, you can have numerous parameters designed for input by
property name. It’s even possible to have one parameter accept input both by value
and property name, but this requires a thoughtful approach. Consider the likely usage
patterns for your tools: Will users commonly pipe results to your command or run it as
the initial command in a pipeline expression? Testing various usage scenarios is cru-
cial to ensure proper parameter binding. If problems arise, use Trace-Command to
gain insights into the pipeline’s internal processes.

Summary
Our goal with this chapter—and we hope we’ve achieved it—was twofold. First, we
wanted you to get a fresh understanding of how pipeline objects move from command
to command. We also wanted you to understand how useful command tracing can be
in visualizing that process and in diagnosing unexpected pipeline behavior. Before
long, you’re going to be designing your own commands that will accept pipeline
input, and we want you to continually think about this process and how it works as you
do so.

34

Scripting language:
A crash course

In this book, you’ll notice that you’re only given general information immediately
after using it. In this case, though, I’m going to make an exception. You’ll be writ-
ing scripts throughout this book, and that means including a certain amount of
code. PowerShell’s scripting language is super simple, containing a few dozen
actual keywords, and I’m only going to use about a dozen in this book. But we need
to get the most important of those into our heads to use them when the time
comes. The goal of this chapter isn’t to provide complete coverage of these items
but to give you a quick introduction. They’ll begin to make more sense when you
see them in use throughout the rest of the book.

TIP To learn even more about the material in this chapter, the first place
to look is PowerShell’s help system. Much of this is documented in About
topics. For example, you can look at information regarding about_if and
about_comparison_operators. You also can grab a copy of PowerShell in
Depth, 2nd ed. (Manning, 2014; http://mng.bz/xjzq).

5.1 Comparisons
Almost all the scripting bits we introduce in this chapter rely on comparisons. That
is, you give them some statement that must be evaluated to be either True or False,
and the scripting constructs base their behavior on that result. To make a compari-
son in PowerShell, you use a comparison operator. Unlike traditional scripting or pro-
gramming languages, PowerShell doesn’t use the traditional operator characters
(<, >, +, =, –), but instead uses an English abbreviation. Here are the core operators
that you’ll likely use throughout this book:

http://mng.bz/xjzq

355.1 Comparisons

 -eq—Equal to
 -ne—Not equal to
 -gt—Greater than
 -ge—Greater than or equal to
 -lt—Less than
 -le—Less than or equal to

For string comparisons, these are case-insensitive by default, which means "Hello"
and "HELLO" are the same. If you explicitly need a case-sensitive comparison, add a c
to the front of the operator name, as in –ceq or –cne.

 When you use these operators, PowerShell will return a True/False value:

PS C:\> 1 -eq 1
True
PS C:\> 5 -gt 10
False
PS C:\> 'James' -eq 'Jim'
False
PS C:\> 'James' -eq 'james'
True
PS C:\> 'james' -ceq 'James'
False

PowerShell has a different extensive range of operators than some languages. For
example, no “exactly equal to” comparison forbids the shell’s parser from coercing a
data type into another type.

TRY IT NOW Is 5 -eq "Five" true or false?

5.1.1 Wildcards

There’s a wildcard comparison, -like and –not like, along with the case-sensitive ver-
sions –like and –not like. These let you use common wildcard characters such as *
(zero or more characters) and ? (a single character) in making string comparisons:

PS C:\> 'james' -eq 'Jim'
False
PS C:\> 'james' -eq 'James'
True
PS C:\> 'james' -ceq 'James'
False
PS C:\> 'PowerShell'-like '*shell'
True
PS C:\> 'james' -notlike 'james*'
False
PS C:\> 'james' -like 'jam?s'
True
PS C:\> 'james' -like 'Jim'
False

36 CHAPTER 5 Scripting language: A crash course

These wildcards aren’t as rich as the full regular-expression language; PowerShell
does support regular expressions through its –match operator, although we won’t be
diving into that one in this book. Check out the chapter on PowerShell and regular
expressions in PowerShell in Depth, 2nd ed. (Manning, 2014; http://mng.bz/xjzq).

5.1.2 Collections

PowerShell’s –contains and –in operators operate against collections of objects. They
get tricky, and people almost always confuse them with wildcard operators. For exam-
ple, we see this a lot:

If ("DC" –in $ServerList) {
 $IsDomainController = $True
}

This doesn’t work the way you might think. It reads just fine in English, but it’s not
what the operator does. If you start with an array, you can use these operators to deter-
mine whether the array (or collection) contains a particular object:

$array = @("one", "two", "three")
$array –contains "one"
$array –contains "five"
"two" –in $array
"bob" –in $array

TRY IT NOW Run those five lines of code in PowerShell, typing the lines in
one at a time and pressing Enter after each.

5.1.3 Troubleshooting comparisons

About 50% of the script bugs are due to a comparison that doesn’t work as expected.
Our best advice for troubleshooting these is to stop working on your script, jump into
the PowerShell console, and try the comparison.

TRY IT NOW What will "55" –eq 55 result in? We won’t give you the answer—
try it and see if you can explain to yourself why it did what it did.

5.2 The If construct
You’ll often need an If construct, which allows your code to make logical decisions. In
its full form, the If construct looks like this:

If (<expression>) {
 # code
} ElseIf (<expression>) {
 # code
} ElseIf (<expression>) {
 # code
} Else {
 # code
}

http://mng.bz/xjzq

375.2 The If construct

Here’s what you need to know:

 An <expression> is any PowerShell expression resulting in either $True or
$False. For example, $something -eq 5 will be $True if the variable $something
equals 5. Read PowerShell’s “about_comparison_operators” article for a list of
valid comparison operators, including -eq, -ne, -gt, -like, and so on.

 The expressions in your If statement can be as complicated as they need to be.
Just remember that the entire expression has to result in True for the script
block code to execute:

$now = Get-Date
if ($now.DayOfWeek -eq 'Monday' -AND $now.hour -gt 18) {
 #do something
}

 The If portion of the construct is mandatory and must be followed by a
{script block} that will execute if the expression is True.

 You may have zero or more ElseIf sections. These sections supply their own
expression and script block, executing if the expression is True. But you must
remember an important point: only the script block of the first expression that
is True will run. So, in the previous skeleton example, if the first expression is
True, then only the first script block will run; none of the ElseIf expressions
will even be evaluated. If you have multiple ElseIf statements, PowerShell will
continue to evaluate them until it finds one True. When it does, PowerShell
will jump to the command after the If structure.

 You may have an optional Else section at the end. This defines a script block
that will execute if no preceding expression is evaluated to True.

 There is no End If statement like you might find in other languages.
 In the previous skeleton example, you’ll notice lines that start with a # symbol.

Those are comments. PowerShell will ignore everything after a # at the end of
that line.

PowerShell is forgiving about formatting. For example, we think this is a nice way to
format the construct:

If (<expression>) {
 # code
} ElseIf (<expression>) {
 # code
} ElseIf (<expression>) {
 # code
} Else {
 # code
}

Some people like to put the opening { on a separate line. One way is not more correct
than another, but we wanted you to be aware that some people may do it this way:

38 CHAPTER 5 Scripting language: A crash course

If (<expression>)
{
 # code
}

However, PowerShell will let you do stuff like this as well:

If (<expression>) { # code }
ElseIf (<expression>) { # code }
ElseIf (<expression>) { # code }
Else { # code }

That’s harder to read, especially if any of the script blocks need to contain multiple
lines of code. We certainly don’t recommend you use this method, but you’ll see other
people do so sometimes. The bottom line is that although PowerShell doesn’t care,
you should. Pick a formatting style that makes your code easy to read, and stick with it.

Let’s look at a practical example of this construct. Suppose you have a Process object
in the variable $proc, and you want to take some action if the process’s virtual memory
(VM) property exceeds a specific predetermined value:

If ($proc.vm –gt 4) {
 # take some action
}

Quick Tip
Code formatting is important. It may seem like an irrelevant aesthetic detail, but it
makes your code easier to follow, which means fewer bugs. Trust us on this. Take a
travesty like this:

If ($user) { ForEach ($u in $user) {
Set-ADUser –Identity $user –Pass $True }

It’s hard to tell if that’s valid code or not (it isn’t), given how the curly braces are man-
gled and the way the ForEach starts on the same line as the If.

If you’re using a good editor, such as Visual Studio (VS Code), it’s pretty easy to keep
your code neat: just let the editor do its thing. When you open a construct with { and
press Enter, VS Code will automatically add the closing } and place your cursor—
indented a perfect four spaces—inside the construct. Focus on letting VS Code do
the work—use the Tab key when you need to indent a line, for example, rather than
pressing the spacebar. In addition, if you haven’t already, turn on bracket colorization
in VS Code.

If things aren’t lining up vertically, here’s a trick: highlight the affected region (or your
entire script document), right-click, and select Format Selection. VS Code will clean
up, properly indenting within each construct. You can also open the command palate
and choose Format Document to format the entire document.

395.3 The ForEach construct

Notice that we’ve used a comment—remember, anything after a # symbol is ignored
until the end of that line—to indicate where the action-taking code would go. What if,
instead, you wanted to take an action for VM values less than 2 but greater than 4?

If ($proc.vm –gt 4 –or $proc.vm –lt 2) {
 # take some action
}

The –or Boolean operator lets you “connect” two conditions. Note that the compari-
son on either side of an –or an– must be complete. This, for example, wouldn’t work:

If ($proc.vm –gt 4 –or –lt 2) {
 # take some action
}

In this “wrong” example, the “less than” comparison isn’t complete. It has nothing on
the left side; PowerShell will ask, “What, exactly, is supposed to be less than 2?” and
toss an error. If it helps, you can use parentheses to set off each comparison visually:

If (($proc.vm –gt 4) –or ($proc.vm –lt 2)) {
 # take some action
}

Next, let’s look at an example that has additional options:

If ($proc.vm –gt 4) {
 # take some action
} ElseIf ($proc.vm –lt 2) {
 # take some other action
} Else {
 # nothing was true; do this instead
}

As we explained earlier, PowerShell will perform the first of these actions whose con-
dition evaluates to True and then stop evaluating anything after that.

5.3 The ForEach construct
You’ll often use a ForEach construct, which is sometimes referred to as an enumerator.
ForEach is used in most programming languages, so it will likely look familiar. It works
a bit like PowerShell’s ForEach-Object command, but it has a different syntax:

ForEach ($item in $collection) {
 # code to run for each object referenced at $item
}

The idea here is to take a collection or an array of objects and go through them one at
a time. Each object, in its turn, is placed into a separate variable so that you can refer
to it easily. After you’ve enumerated all the objects in the collection or array, the loop
exits automatically, and the rest of your script executes.

40 CHAPTER 5 Scripting language: A crash course

 The second variable in the construct, $collection, is expected to contain zero or
more items. The ForEach loop will execute its {script block} once for each item con-
tained in the second variable. That is, if you provide three computer names in
$collection, the ForEach loop will run three times. Each time the loop runs, one
item is taken from the second variable and placed into the first. So, within the previ-
ous script block, the $item will contain one thing at a time from the $collection.

TIP We made up the variable names $item and $collection. You’d ordi-
narily use different variable names that correspond to what those variables are
expected to contain.

You’ll often see people use singular and plural words in their ForEach loops:

$names = Get-Content names.txt
ForEach ($name in $names) {
 # code for each $name
}

This approach makes it easier to remember that $name contains one thing from
$names, but that’s purely for human readability. PowerShell doesn’t magically know or
care that name is the singular of names. The previous example could easily be rewritten
as follows:

$names = Get-Content names.txt
ForEach ($purple in $unicorns) {
 # code
}

PowerShell would be perfectly happy with this. That code would be a lot harder to
read and keep track of, but if you like unicorns, go for it. In some cases, though, you’ll
notice that the second variable isn’t plural, although it feels like it should be:

foreach ($computer in $computername) {

It’s often because $ComputerName is one of a function’s input parameters. Power-
Shell’s convention is to use singular words for command and parameter names. You
won’t see -ComputerNames; you’ll only see -ComputerName as a parameter. You want to
stick with the convention, so, in that case, your ForEach loop wouldn’t follow a singu-
lar/plural pattern. Again, PowerShell doesn’t care, and we feel it’s more important
that your outward-facing elements—command and parameter names—follow Power-
Shell naming conventions.

BEST PRACTICE In a script, we greatly prefer using ForEach over the ForEach-
Object command. There are some advantages: you get to name your single-
item variable rather than using $_ or $PSItem, making your code more read-
able; and the construct often executes more quickly than the command over
large collections too. With large collections of arrays, the construct can force

415.3 The ForEach construct

you to use more memory because the entire array or collection must be in a
single variable. When you use the command, objects can be piped in one at
a time and dealt with, consuming less memory in some scenarios.

There’s one gotcha with the ForEach construct: it doesn’t write to the pipeline after
the closing curly brace. We’ve seen people try to create something like this, only to
have it fail:

$numbers=1..10
foreach ($n in $numbers) {
 $n*3
} | out-file data.txt

If you try this in VS Code or other code editors, you’ll most likely see an error about
an empty pipe. Everything inside the script block is written to the pipeline. You can’t
pipe anything after. But you can write the code like this:

$numbers=1..10
$data = foreach ($n in $numbers) {
 $n*3
}
$data | out-file data.txt

This will work as expected. In this second example, $n*3 is implicitly writing its output
to the pipeline (Write-Output is PowerShell’s default command), and the end result
of the ForEach construct is captured to the $data variable. That, in turn, is then piped
to Out-File. Much of this confusion happens because the alias for the ForEach object
is ForEach, although it works differently from the ForEach construct. The construct
that we’re teaching here always has the ($x in $y) syntax right after it, whereas the
ForEach-Object command doesn’t use that syntax.

 With all this in mind, we urge you to think carefully about when to use the ForEach
enumerator because it’s easy to fall into a non-PowerShell habit. I’ve seen code like
this from people just getting started or who haven’t grasped the PowerShell model:

$services = Get-Service –name bits,lanmanserver,spooler
Foreach ($service in $services) {
 Restart-service $service –passthru
}

This will obviously work if you care to try, and it’s what we did in the days of VBScript,
but this isn’t the PowerShell way. There’s no need for such contorted code when this
works just as well:

$services | restart-service -passthru

42 CHAPTER 5 Scripting language: A crash course

5.4 The Switch construct
The switch construct is great as a replacement for a huge If block that contains mul-
tiple ElseIf sections. Here’s a prototype:

switch (<expression>) {
 <condition> { <script block> }
 <condition > { <script block> }
 <condition > { <script block> }
 default { <script block }
}

Here’s how it works:

1 The expression is usually a variable containing a single value or object. This is
important because the switch alone won’t enumerate collections or arrays.

2 Each condition is a value that you think the expression might contain. Each
condition is followed by a script block (which can be broken into multiple
lines), and if the expression contains the condition, then the associated script
block will execute.

3 The default block executes if no conditions match; you can omit the default
if you don’t need it.

Each matching condition will execute. It’s possible to have multiple matches; if so,
each matching script block will execute. This may seem nonsensical until you dive
into some of the construct’s advanced options:

$x = "d1234"
switch -wildcard ($x)
 {
 "*1*" {"Contains 1"}
 "*5*" {"Contains 5"}
 "d*" {"Starts with 'd'"}
 default {"No matches"}
 }

The -wildcard switch makes it possible for multiple conditions to match. In this
example, if $x contained “1 of 5 dying worms”, then you’d get two lines of output:
"Contains 1" and "Contains 5". The third pattern doesn’t match, and because at
least one pattern did match, the default block won’t execute. Be sure to read the
“about_switch” article on PowerShell’s help system.

5.5 The Do/While construct
You’ll be using this guy later on. While lets you specify a script block of statements,
which will execute while some condition is true. You get two basic variations:

While (<condition>) {
 # code
}

435.6 The For construct

Do {
 # code
} While (<condition>)

These both do essentially the same thing: they repeat the code inside the construct
until the specified <condition> is no longer true. Here’s the difference:

 With the first version, the construct’s code might never run. It will only run if the
<condition> is true.

 With the second version, the code inside the construct will always run at least
once. It doesn’t check the <condition> until after the first execution.

You need to be a bit careful about writing these loops because there’s no automatic exit
the way there is with a Switch, If, or ForEach construct. Unless you’re sure that your
<condition> will eventually change and evaluate to false, then a Do/While construct can
basically loop forever—called an infinite loop. In most PowerShell hosts, like the console,
you can press Ctrl-C to break out of the loop if you realize you’ve created an infinite loop.

5.6 The For construct
The last of the scripting constructs, For, is so rarely used that we debated even putting
it in the book (you can even skip this one if your head is swimming at this point). But
just in case someone would be upset that we left it out, For typically looks like this:

For (<start>; <condition>; <action>) {
 # code
}

This loop is meant to repeat the code inside the construct several times. It can be a bit
easier to explain with a more concrete example:

For ($i = 0; $i –lt 3; $i++) {
 Write $i
}

The idea is that the <start> item gets executed before the construct runs, setting $i
to a value of 0. The <condition> keeps the construct running as long as it evaluates to
True. Finally, after the construct’s script block executes, the <action> is performed
each time. So, in this example, the script will execute four times:

1 $i is initially set to 0, and then the script block executes.
2 Because $i is less than 3, $i is incremented by 1, and the script block executes.
3 Because $i is less than 3, $i is incremented by 1 (now 2), and the script block

executes.
4 Because $i is less than 3, $i is incremented by 1 (it’s now 3), and the script

block executes.
5 Now, $i is 3, which isn’t less than 3, so the script block doesn’t execute, and the

construct exits.

44 CHAPTER 5 Scripting language: A crash course

This isn’t different from using PowerShell’s range operator and a ForEach-Object
command:

0..3 | ForEach-Object { Write $_ }

The For construct is easier to read and feels more declarative to us, and if we ever
needed to perform that kind of task, we’d opt for the construct over the range opera-
tor trick. But we rarely use For because we only run into a few situations where we
must do something a set number of times. Instead, we tend to use ForEach more often
because we have a collection of objects and want to perform some operation against
each one. You can do that with For, but it’s a bit ugly. Assuming $objects contains a
collection of things, here are two ways you could enumerate them:

For ($i = 0; $i –lt $objects.Count; $i++) {
 Write $objects[$i]
}
ForEach ($thing in $objects) {
 Write $thing
}

The second example is easier to read. We suspect that people using the first technique
are coming to PowerShell from a language that doesn’t have an enumeration con-
struct like ForEach, and they default to For because it’s what they know.

5.7 Break
There’s one more scripting critter you should know about: the Break keyword. It exits
whatever it’s in—with some caveats:

 In a For, ForEach, While, or Switch construct, Break will immediately exit that
construct.

 In a script, but outside of a construct, Break will exit the script.
 In an If construct, Break won’t exit the construct. Instead, Break will exit what-

ever contains the If construct—an outer For, ForEach, While, Switch, or the
script itself. The If is invisible to Break, so whatever the If is within is what
Break sees.

The break is useful for aborting an operation. For example, suppose you have a list of
computers in the variable $computers. You want to review each one and ping them to
see if they respond. But should one computer not respond to its ping, for whatever
reason, you want to stop everything and quit immediately. You might write this:

ForEach ($comp in $computers) {
 If (-not (Test-Ping $comp –quiet)) {
 Break
 }
}

45Summary

You need to be aware of a bit of an antipattern. Some folks will write a loop that’s
intentionally infinite. Instead of specifying a natural condition to end the loop, they’ll
use Break to abort. Here’s a short example:

While ($true) {
 $choice = Read-Host "Enter a number."
 If ($choice –eq 0) { break }
}

Often, we wonder if those folks weren’t aware of the loop’s other options. In this case,
for example, it seems they wanted to ensure that the loop’s contents were executed at
least once, but they didn’t know how to go into the loop the first time. I’d rewrite this
as follows:

Do {
 $choice = Read-Host "Enter a number."
} While ($choice –ne 0)

This is a little cleaner in terms of code execution. A problem with Break is that it pro-
vides an alternative way out of a construct, creating a secondary flow of logic that’s
harder to follow. Because Break is often used inside an If construct—as shown here—
it becomes difficult to predict the behavior of the script without running it. That, in
turn, creates all kinds of debugging and troubleshooting problems that we feel are
best avoided. In short, we try to write constructs with a meaningful natural endpoint,
and we try to avoid Break when possible.

TIP Try to avoid using Break when you can. Break creates what we call a non-
natural exit to a loop; that is, the loop isn’t coming to its natural conclusion.
Especially in a loop that contains a lot of code, it’s easy to skim through it and
miss the Break keyword, making it harder to understand why the loop is bail-
ing out prematurely. When we do have to use Break, surround its use with
blank lines and worded comments indicating what’s happening.

Summary
The constructs we covered in this chapter form the core of what we consider to be
PowerShell’s scripting language. Unlike commands, these constructs exist to provide
logic and structure to your scripts. If you can keep these four core constructs in mind,
you’ll probably find that they’re all the scripting code you need to know for most of
the scripts you’ll write.

46

The many
forms of scripting

(and which to choose)

You probably think you’re the victim of bait-and-switch tactics by Manning. We use
words such as tool and toolmaking but haven’t talked much about scripting. After all,
the title of this book is Learn PowerShell Scripting in a Month of Lunches. But what if I
told you that scripting equals toolmaking in this instance? Scripting is a pretty
generic word, and in the PowerShell universe, we feel that it can refer to a couple
of specific and valuable things that we’ll go over in this chapter.

6.1 Tools vs. controllers
Think about a hammer. A hammer is a tool, and it’s probably one you’ve at least
seen before, even if you’ve never wielded one. A hammer is self-contained; it’s main
purpose is to strike other things. A hammer has no context about its life and no
clue about its destiny. A hammer may be used one day to help build a house,
another day to break a window, and another day to smash your thumb. Sitting
alone in a toolbox, a hammer is useless unless someone is swinging it.

 You’re the one that is going to swing the hammer to strike the nail (or your
thumb). Think of the hammer for a second again. You must think about how hard
you’ll swing it and what you’ll hit (be it a nail, window, or thumb). The desired out-
put is to hit the nail and drive it into the wood, producing an audible ping as the
nail head is struck. But what happens if you hit the nail at an angle? It will bend or
break, having unintended consequences.

 What if I told you PowerShell is just like a hammer? It takes input from you and
produces output. Sometimes, it works the way you want it to and, sometimes, it
doesn’t, but PowerShell will always do exactly what you tell it to do—nothing
more and nothing less. This is the beauty of PowerShell. What PowerShell calls a

476.2 Thinking about tools

command—a catchall word referring to cmdlets, functions, and other executable arti-
facts—we call a tool. A tool should do one thing and one thing only. That’s why we
have tools named Get-Process, Start-Process, Stop-Process, and so on—each of
them does one thing and one thing only. We don’t have a tool called “Manage-Pro-
cesses,” capable of starting, stopping, or listing processes depending on your parame-
ters. Such a super-tool goes against the PowerShell ethos of one tool per single task.

 Think about Stop-Process. It’s no good at all on its own. Like a hammer, it needs
to be given context and purpose. It needs to be controlled. The tool gains meaning
and purpose when used as part of a controller script.

 This chapter is about learning to draw the line between these two equally important
kinds of script. There are specific techniques suitable for tools and different ones ideal
for controllers. Each set of techniques is designed to reduce your workload, reduce
debugging, reduce maintenance, and increase readability and reusability. Knowing
which kind of script you’re writing will help direct you to the right set of techniques, and
that’s the key to being a successful scripter and, ultimately, toolmaker!

6.2 Thinking about tools
Tools have some important characteristics in the PowerShell world:

 Tools do one thing, which the verb portion of their name should describe. It’s better to
make five small tools that do one thing than one big tool that does five things.
Smaller, more tightly scoped tools are easier to write, easier to test, and easier to
debug and maintain.

 Tools don’t know where their input data is generated, any more than a hammer knows in
advance whether it will be held in hand or duct-taped to some robotic contraption. Tools
accept all input only from their parameters, just as a hammer accepts input only
from what’s holding its handle. (Yeah, we’re playing pretty loose with the meta-
phor, but you get the idea.) Other tools may be used to create the input and
then fed to a tool’s parameters.

 Tools don’t know how their output will be used, and they don’t care, any more than a
hammer cares if it will be hitting a nail or a thumb. Tools don’t worry about making
their output pretty—other tools can handle that. Tools don’t worry about where
their output will go—again, other tools can handle that.

We tend to think about several different types of tools informally. This isn’t a strict tax-
onomy, but it does give you an idea of how they can relate to one another:

 Input tools—These tools are designed to create data primarily consumed by
other tools. You might write a tool that gets a bunch of computer names from
Microsoft Entra ID, for example. Get is a common verb for input tool names,
but you’ll also see Import and ConvertFrom.

 Action tools—These tools usually require additional input before they do some-
thing, and that “something” can be anything you imagine. Plenty of commands
have verbs like Set and Remove.

48 CHAPTER 6 The many forms of scripting (and which to choose)

 Output tools—These tools are usually designed to take the output of an input tool
or an action tool and render it for some specific purpose. They might create a spe-
cially formatted data file, render a particular kind of onscreen display, and so on.
Verbs such as Out, Format, ConvertTo, and Export are common for output tools.

Imagine that you need to write a script that will report the password age of all the ser-
vice accounts in your environment and format that into a CSV so the Security Infor-
mation and Event Management (SIEM) tool used by your cybersecurity department
can parse logs to see where these accounts are being used. Upper management wants
a nice HTML report to display on their video board during the daily operations brief.
How many tools do you need to write? You have to start by thinking of the discrete
tasks involved, and see what tasks are already solved by a PowerShell tool:

 First, we need to find the command that will get the account password age; in
this case, Get-AdUser is what we want to use. We’ll grab some of the attributes,
save that as an array, export it to a CSV, and then do some fun HTML manipula-
tion as well. If you’re missing this command, use this one to install it:

Install-WindowsFeature -Name "RSAT-AD-PowerShell" `
-IncludeAllSubFeature

 We must figure out how to filter based on password age. Fortunately, the native
Where-Object command can do that, so you have to write a fancy widget to
filter this.

 You’ll need to convert those results to CSV and save them to a file, and the
native Export-CSV command can do that for you—no work for you here!

 You’ll also need a way to make an HTML report. If the native ConvertTo-HTML
command isn’t sufficient, then the EnhancedHTML2 module from the Power-
Shell Gallery includes ConvertTo-EnhancedHTML, which should do the trick.
You’ll need to learn to use it, but you won’t have to code anything.

So, you only need to write one tool for all of that. That’s the beauty of the tool-based
approach: So many great, generic tools already exist in PowerShell and out in the
broader world that you often only need to focus on the stuff that’s entirely specific to
your environment. Do that correctly, and your custom tools will connect seamlessly to
everything that already exists.

 But your prospective Get-ServiceAccountPassword tool is useless by itself. It
needs to be given purpose and context, which means it needs a controller.

NOTE We should point out that you may not find the terms tool and controller
in Microsoft documentation or the greater PowerShell community. For many
people, it’s just scripting. But to truly understand the PowerShell way of auto-
mating things, you should keep the concepts of tool and controller in mind.
Many beginning students struggle to write reusable PowerShell code because
they’re trying to do everything simultaneously. Defining the tool separately
from how it will be used is very important.

496.3 Thinking about controllers

6.3 Thinking about controllers
Whereas tools are generic and lack context, controllers are all about context. The pur-
pose of a controller is to put a tool to a specific use in a specific situation. This is a
good thing for you because a tool you create can be used in many different scenarios,
which is what the controller is about. We don’t use command-style, verb-noun names for
controllers; we give them friendlier, more English-like names. For example, Password-
HistoryReport.ps1 is the script we might create to generate that HTML report of cus-
tomers who’ve been inactive for a year or more. That script might be really simple,
containing only a single pipeline:

Get-ServiceAccountPassword |
Where-Object { $_.passwordlength –lt (Get-Date).AddDays(-365) } |
ConvertTo-HTML |
Out-File \\intranet\www\reports\inactive-customers.html

It’s not a complex script, and that’s the idea. Controllers often are simple because
they’re just stringing together some tools. None of these tools knew beforehand that
they’d be involved in creating HTML customer reports, but this controller gave them
purpose. We’d probably have another one, PasswordHistoryReportCSVDataFile.ps1,
that would take care of generating the required CSV data file. For fun, we might also
create DisplayPasswordHistoryReport.ps1, which would query inactive customers and
format the output for an attractive onscreen display. It never hurts to go above
and beyond!

 Like tools, controllers have some specific characteristics:

 A controller is tied to a context. It automates a business process, interacts with a
human being, or does some other situation-specific thing.

 A controller often has hardcoded data. Examples of hardcoded data include a file-
name that will be read as input or a database connection string that will give the
output a place to go.

 A controller is responsible for putting its output into a particular form, which may not be
structured data. For example, a controller may display information onscreen or
send it to a printer. The tool writes objects to the pipeline.

 Whereas a tool performs a task, a controller solves a problem. That “problem” is often a
business need or management directive.

People often ask about writing “graphical scripts” in PowerShell using either .NET
Framework’s Windows Forms library or its newer Windows Presentation Foundation
(WPF) library. You can do it, and we consider such scripts to be controllers. They should
contain minimal code and mainly rely on running tools. The PowerShell paradigm is
that the commands executed from a graphical controller are the same commands you
could run from an interactive console prompt. The graphical scripts merely put those
tools to a specific purpose, tied to the eyes and fingers of human beings.

50 CHAPTER 6 The many forms of scripting (and which to choose)

6.4 Comparing tools and controllers
Think about an automotive assembly line. These days, they’re largely staffed by spe-
cialized robots. One robot paints the car; another one welds two pieces together.
Those robots are tools: in a warehouse all by themselves, they’re useless. It’s when you
add a controller—the production line, which places the robots in sequence and coor-
dinates their activities—that you have something useful. Table 6.1 outlines some of
the key differences.

In this book, we’ll focus a great deal on creating tools. How they’re used is no differ-
ent from using any other PowerShell command such as Get-Eventlog. Anyone who
has access to your tools can create their own controller.

6.5 Some concrete examples
Let’s walk through real-world examples of this tools versus controllers design concept.
You’ll see little code in these examples, but we’ll walk through the thought process
behind them.

Controllers from commands
If you look at the previous sample controller script that uses our fictitious Get
-ServiceAccountPassword tool, it’s just a PowerShell command. Your “controller”
can be you typing a command interactively in the console. This is a great way to
ensure your tool does what you intend.

Putting the commands in a controller script saves a ton of typing and makes running
your command consistent. A controller script can also be a bit more complex if you
need it to be. By using a script file, anyone can run it, and the results will be consis-
tent and predictable.

Table 6.1 Tools vs. controllers

Tools Controllers

Do one thing and one thing only Connect multiple tools

Accept input on parameters May have hardcoded input, and may use tools to retrieve data
that will be fed to other tools

Produce data as objects May produce any kind of output, including formatted data,
special files, and so on

Complete a task Solve a problem or meet a need

Often useless or minimally useful on
their own

Self-contained

Useable across a variety of situations Used only for a specific situation

516.5 Some concrete examples

6.5.1 Emailing users whose passwords are about to expire

This is a great example, which we’ll put some code to later in this book. Say you
wanted to send a quick email reminder to users whose passwords were about to expire
in a day or two. What’s involved there?

 Start by getting a list of users with expiring passwords—those whose accounts
aren’t disabled and don’t have a “password doesn’t expire” setting. You probably need
to calculate exactly when their password expires and filter out anyone whose password
wasn’t within whatever range you cared about. You then email them all and perhaps
log that information to a file for diagnostic purposes.

 You have five distinct tools to build, each one performing a single task from that
overall process:

 Get expiring user accounts
 Get password expiration date
 Filter accounts based on the number of days
 Send email
 Create an audit trail

If you did it right, your “controller” script might look like this:

Get-EnabledExpiringUser |
Add-ExpiryDataToUser |
Where-Object { $_.DaysToExpire –lt 2 } |
Send-PasswordExpiryMessageToUser |
Export-CSV report.csv

Three of those are new tools you need to build, and two are native to PowerShell.
You’re maybe looking at writing a hundred or so lines of code to build those three
tools—and some of them would have been used in other business processes. For
example, getting enabled and expiring user accounts could be useful elsewhere. Get-
ting a list of all users and adding their password expiration data could also be useful in
other scenarios. Modularizing these tasks as tools and then calling them from a con-
troller makes a lot of sense. Remember, the controller doesn’t necessarily have to be a
script. It could be you running the commands in a PowerShell session. Using a script
saves typing and ensures consistency.

6.5.2 Provisioning new users

This is our classic tools-vs.-controllers example. Think about what goes into provisioning
a new user in your organization. You probably have to set up an account, mailbox-
enable it, set up a home folder somewhere, maybe add the user to something in Share-
Point, and so on. Each of those is a discrete task within the process, and each should be
a tool. Many of those tools—such as New-ADUser—are provided by Microsoft.

 There’s an opportunity to be clever here too. For example, where do you set up
the new home folder? What’s your standard business logic? The answer might be the

52 CHAPTER 6 The many forms of scripting (and which to choose)

following: “Well, we look at the existing file servers, and we usually don’t put more
than 1,000 users per home folder file server. So, we find a server with fewer than 1,000
home folders already and use that one. But if the server we pick has less than 75 GB
free, then we leave it alone and pick another one.” That’s a task, and it’s one you could
automate. Perhaps you’d create a Select-UserHomeFolderFileServer tool that does all
the analysis and returns a list of eligible servers, and then a New-UserHomeFolder
tool that uses the first eligible server to create the new user’s home folder on. Those
are two discrete tasks and should be two discrete tools.

6.5.3 Setting file permissions

Here’s a task that may be a bit trickier: “I want to set a file permission on an entire
hierarchy of files, but I need to exclude certain file types.” What are the tasks there?
This is where it’s sometimes helpful to think about how you’d do this manually. And
we mean manually, not using the GUI. Like, if you were Windows itself, how would you
do this?

 You start by getting a list of the files. For this, PowerShell has a tool that can recurse
through subfolders and even exclude files based on a specification you provide. Then,

Let the verb be your guide
One time, we needed to grab a bunch of users from Active Directory. Get-ADUser
does that just fine, but we wanted to enrich the user objects with additional data.
Specifically, we wanted to add a property that indicated how long it had been since
the user account had been used. In some older domains, that requires pinging every
domain controller. We also wanted to filter out user accounts that had never been
used to log on. So, we started thinking about the name such a tool would have.

We always start with the PowerShell documentation on Microsoft Learn (http://mng
.bz/XqQG), which lists the official, allowed verbs for command names. In this case,
the Add verb seemed like it could work. After all, we were adding information to the
user objects, and the description for that verb says it means to “[attach] an item
to another item.” But adding doesn’t communicate the filtering process we also
wanted to do. We struggled with it for a while. What about Process as a verb because
we’re really processing these user objects? Nope, that’s not a valid verb. Evaluate,
maybe? Nope.

That’s when it dawned on us. We were having trouble because our tool was doing two
things: it enriched an object by adding information and filtered objects out of the pro-
cessing queue. The existing Where-Object command already does that filtering—we
didn’t need to duplicate that within another tool.

Once we stopped trying to force the verbs to work, everything made sense. We
needed to create one tool to enrich the user objects, and we also needed to use an
existing tool to filter out the ones we wanted. Instead of doing two things in one tool,
we did one thing—and we were better off for it. Listening to PowerShell’s verbs and
honoring their intent can help you make better toolmaking decisions.

http://mng.bz/XqQG
http://mng.bz/XqQG
http://mng.bz/XqQG

536.6 Control more

you need to get their existing permission object or access control list (ACL). Again,
PowerShell has a native command to do that. Next, you need to add permission to each
ACL. There’s a command for that too. So, your “script” might be a complex one-liner in
this case. It would be a controller because all the tools you need to use already exist.

NOTE This example raises a good point that’s sometimes a hard truth to face:
if you don’t know much about how Windows (or whatever you’re managing)
works under the hood, you’ll have a hard time automating it in PowerShell.
The GUI hides a lot of how Windows works, and PowerShell doesn’t; start using
PowerShell a lot, and you’ll quickly realize how much of an expert you are!

6.5.4 Helping the help desk

Suppose your help desk consists mainly of entry-level folks with less experience than
you. To help them solve common problems and complete common tasks, you create a set
of tools for them. They’re not comfortable with command-line tools yet, so you decide to
create a GUI for them using WPF or a commercial tool such as PowerShell Studio.

 As we’ve mentioned, a GUI is a form of controller. That means it should have mini-
mal code, that is, zero code beyond what is needed to make the GUI work. Clicking a but-
ton in the GUI might run a separate controller script designed to automate a given process;
that script might call on multiple tools to accomplish the tasks within that process. This
may seem like a lot of layers, but consider these arguments in favor of the approach:

 GUIs are hard to write and harder to debug. The less code you have in them, the
happier you’ll be.

 GUIs are never the only place where a given task is accomplished. They should be a way
of triggering the task, but not the place where the task actually “lives.” A GUI that
runs a controller script is great because that same script could be run from else-
where too.

 A standalone controller script that calls standalone tools is easier to develop and debug.
You can focus on solving one task at a time in your tools, bring them together in
the controller script, and then call that from whatever GUI you’ve built.

 By separating things into layers, you’ll help your help desk get better at their jobs. As
stated by the I in GUI, this is an interface—a means of accessing functionality. A
PowerShell console is another such interface—a command-line interface
(CLI). Suppose your help desk can summon functionality from either inter-
face. In that case, you’ll be able to slowly move them over to the CLI, which will
ultimately offer them more flexibility and control as their experience grows.
Building your functionality to be interface-independent is a great idea.

6.6 Control more
One last thought on this whole tools-vs.-controllers idea is that you shouldn’t forget all
the other tools you have at your disposal. Sure, this is a PowerShell book, so we’ve
been looking at PowerShell commands and concepts. But if there’s a non-PowerShell

54 CHAPTER 6 The many forms of scripting (and which to choose)

tool—perhaps a Microsoft Windows Resource Kit Tool or a vendor-supplied com-
mand-line tool—and it makes sense to use, then use it. There’s no requirement that
your controller script can only use PowerShell.

 Imagine that, for compliance purposes, you must create a report for each server in
your domain from the MSInfo32.exe command-line tool. What tools might you need to
use? Perhaps Get-ADComputer from the Active Directory module can be used to get the
computer accounts. You might want to ping the computer first with Test-Connection,
and then, if the computer is online, run the MSInfo32 command. Your boss could
even ask that you record the server names that aren’t online in a separate text file. In
the end, you might not need to create any new tools, but rather a controller script to
pull together this collection of PowerShell and non-PowerShell tools. It might look
something like this:

#GetComplianceInfo.ps1
Get-ADComputer -filter * | foreach {
 if (Test-Connection $_.name -quiet) {
 msinfo32 /computer "\\$($_.name)" /report "c:\work\
å $($_.name)-msinfo.txt"
 }
 else {
 $_.name | out-file c:\logs\offline.txt -Append
 }
}

6.7 Lab
This chapter should have you thinking about the most important top-level element of
scripting: what kind of script to make. Although we haven’t explicitly stated it, often,
the first step in scripting doesn’t involve writing any code but rather writing down
what you need to accomplish in a very granular fashion. If we did our job in this chap-
ter, you’re starting to think about tools and controllers in the right way—the PowerShell
way—and you’re beginning to see how they work together to accomplish business
tasks. If you can completely embrace the distinction between the two and respect their
individual purposes, then you’ll be set to succeed in PowerShell scripting.

 With that in mind, let’s see how much you understand about what we’ve been try-
ing to explain and demonstrate in this chapter. Break out a pencil and paper, and fig-
ure out what tools you’d need to accomplish these business problems. Identify those
you might have to create and those that already exist. Finally, draft at least an outline
of how you might use them. This doesn’t have to be actual code:

1 You need to review departmental shares and identify files that haven’t been
modified in over a year. Your boss wants an Excel spreadsheet that shows the file
path, the size of the file, when it was created and last modified, and the file owner.
Here’s a tip: don’t worry about automating Excel. All you need is a CSV file that
can be opened and saved in Excel.

55Summary

2 You get a list of user accounts to be terminated every week. Your manual process
is to disable the user account in Active Directory. Add a comment to the user
account indicating the date terminated, add the user account to the Termi-
nated-Users group, and email the removed user’s manager.

We aren’t supplying any answers or solutions here because your process is more
important than the end result.

Summary
This chapter covered the core concepts of tools and controllers in PowerShell script-
ing. By distinguishing between these two elements, you should now grasp the impor-
tance of leveraging tools for specific actions and controllers for orchestrating these
tools within a broader context to address business needs effectively. We used various
illustrative scenarios, such as user provisioning and file permission settings, to empha-
size the modular nature of PowerShell scripting and the value of utilizing existing
tools. Furthermore, we discussed using graphical interfaces as controllers to under-
score the versatility of PowerShell automation. Ultimately, your takeaway should be
the significance of thoughtful planning and granularity in script development to
achieve success in PowerShell scripting endeavors, along with the essential under-
standing of PowerShell’s underlying mechanisms for effective automation.

56

Scripts and security

Let’s take a few minutes and talk about security. We covered this in the predecessor
book (Learn PowerShell in a Month of Lunches, Fourth Edition, Manning, 2022), but we
want to discuss this in depth. From our experiences in the field, the instant knee-
jerk reaction is that PowerShell should be disabled on every desktop and server on
the face of the planet because of how powerful and straightforward it is. Major cor-
porations have a company-wide ban on using PowerShell for this very reason.

 Viruses and malware are becoming increasingly sophisticated and harder and
harder to detect. The security engineers for the top companies are good at identify-
ing new attack vectors and helping fix the problems. Still, there are more bad guys
out there with so much free time that they are finding vulnerabilities and attack vec-
tors faster than they can be patched or fixed (this is why it’s essential to patch your
systems!). The good news is that many bad actors use PowerShell as the attack vec-
tor. You’re probably wondering how in the world this is good news. Microsoft and a
few trusted community members helped strengthen the security features built into
PowerShell. Think of it as an in-depth defense program with multiple layers of
security in place. PowerShell isn’t antimalware and isn’t intended to protect you
should malware become present in your environment. Understanding PowerShell’s
security goals is essential so that you don’t overestimate them.

7.1 Security is number one
First things first, PowerShell will do what you tell it to do. I write a script to Get-
Process | Stop-Process, it will do just that. No warnings, no confirmation, and no
“Are you sure you want to do this?” prompts—it will simply go off and execute the
command. That said, there isn’t a way to stop a user from purposely running code

577.2 Execution policy

they copied and pasted from the internet. That is an HR problem, not a technology
problem. But we can put safeguards in place to stop a code’s unintentional/unat-
tended execution, which may or may not be malicious. Microsoft’s primary concern is
the accidental or unintentional execution of a PowerShell script.

 But you’ll be creating tools and scripts for yourself and others with the intent of
executing (safely) in your organization. To do that, you must know the script security
concepts discussed here.

7.2 Execution policy
By default, on client OSs, PowerShell won’t run any PowerShell script files, no matter
who you are or what permissions you have. These files have a .ps1, .psm1, .pssc, or
.ps1xml extension. A machine-wide execution policy controls this behavior. Technically,
there are some fine-grained exceptions, but those don’t matter for our purposes. Poli-
cies only need to be set once, and the effect is immediate. To discover your current set-
ting, run Get-ExecutionPolicy. You should see one of the values listed in table 7.1.

PowerShell as a malware vector
There’s little doubt that some bad actors consider PowerShell a convenient way to
introduce malware into your environment. But there’s something massively important
you need to remember: anything attackers can do in PowerShell, they can do without
PowerShell just as quickly.

PowerShell is a wrapper around the .NET Framework at its deepest level. If Power-
Shell didn’t exist, those underlying things would still exist, and attackers would use
them instead. Even if your organization completely locks down PowerShell so it can’t
be used, that’s just a false sense of security because all the underlying functionality
is still available to an attacker.

PowerShell’s original goal was to provide an easier way to use things such as the
component object model (COM), .NET Framework, and Windows Management Instru-
mentation (WMI); PowerShell doesn’t add any new functionality to your environment.
It just adds new ways of using the same functionality that’s been there all along.
Therefore, locking down PowerShell doesn’t lock down anything except a way to use
something—the “something” is still there.

It’s like telling someone your house can’t be accessed because you’ve buried all the
door keys. The keys were never the only means of accessing your home. They’re just
the most convenient way. Picking a lock, kicking in a door, and breaking a window are
still on the table—only, with the keys buried, you’ll have to use those less convenient
means too.

As product team member Lee Holmes famously repeats, “If you’re pwned, you’re
pwned.” If you’ve got a bad actor in the environment, you’re already in a bad spot—
PowerShell is the least of your concerns. Keeping the bad actors out should be your
goal, and limiting what they can get to, should they break in, should be your second
goal. From a security perspective, simply locking down the tools they might use is a
red herring.

58 CHAPTER 7 Scripts and security

Remember, you only need to allow script execution where you intend to run scripts,
which should be your desktop or a centralized management server. You should be
able to leave servers at their default settings and only modify your local client settings.
You might also consider leaving the policy as Restricted on end-user desktops unless
you need them running scripts.

TRY IT NOW What is your execution policy set to? Run the command Get-
ExecutionPolicy to find out.

It’s recommended that you set the execution policy via Group Policy. This will ensure
that each machine in your environment gets the correct execution policy you and
your company have decided to use. Read the about_execution_policies help topic for
more details on these policies.

Table 7.1 Execution policies

Policy Description

Restricted This is the default setting for Windows clients. It means no PowerShell script files
will be executed, including profile scripts.

AllSigned This requires any PowerShell script file containing a valid digital signature from a
code-signing certificate issued by a trusted certificate authority. We’ll cover script
signing in chapter 21.

RemoteSigned PowerShell will run any script created locally, signed or not, but will require any
other script to be digitally signed. This is the default server setting starting with
Windows Server 2012 R2.

Unrestricted PowerShell will run any script with very few questions asked. You might get a
prompt when running a script that PowerShell detects as something downloaded
from outside your machine. This is the default setting for UNIX and Linux.

Bypass PowerShell will run anything with no questions asked. This policy implies that
you’ve taken your steps to ensure script safety and integrity.

Undefined No execution policy can be found. PowerShell will move down the scope list and
use the first effective policy it finds. We’ll discuss this further in a moment.

What about servers?
By default, PowerShell disallows script execution on client computers. Those are the
ones most typically operated by less technically sophisticated users surfing the web
and accessing email.

Servers, however, are different animals. Users shouldn’t have interactive access to
them (except Remote Desktop servers, which are more of a multiclient computer than
a server in this sense). Even administrators shouldn’t be interactively logging on to
servers (that’s right, we said what we said). Stop deploying servers with the Servers
with Desktop Experience option, and please start using the Server Core option! There-
fore, on a server OS, modern versions of PowerShell default to allow script execution

597.2 Execution policy

So, what do we use? For obvious reasons, Microsoft won’t tell you exactly which setting
to use in your environment. But you and the rest of your team must sit down and dis-
cuss the best route to go. Microsoft made specific default settings for a reason, so
maybe that is where you should start.

7.2.1 Execution scope

PowerShell’s execution policy can be set at one of three scope levels, in this order of
precedence:

 LocalMachine—Applies to the entire machine and is stored in the configuration
JSON file at C:\Program Files\PowerShell\7\PowerShell.config.json.

 CurrentUser—Applies only to the current user and is stored in the current user
configuration JSON file in your Documents folder (\Documents\PowerShell),
assuming it isn’t undefined.

 Process—Controls the current session and is stored in the system variable
$env:PSExecutionPolicyPreference. This setting will go away once the Power-
Shell session is closed.

The setting remains effective for as long as your PowerShell session is open. You can
set this by specifying an execution policy switch when you run PWSH.exe. This
demonstrates how easy it is for an informed, intentional user to get around the execu-
tion policy—no matter what you do elsewhere, someone can run the shell with Bypass
if they want to.

 These policies are applied in the order we listed them, even if a more restrictive
policy is set lower. For example, scripts will still be executed if you’ve set the current
user policy as RemoteSigned, but the machine policy is Restricted. From a practical
point of view, setting a machine policy should be sufficient for most organizations. We
feel the other settings are for special-use cases and exceptions.

NOTE Before you get yourself worked up, if someone or something can make
an unauthorized execution policy change, you’re already in trouble. If it’s
some breach, the intruder can already run other arbitrary code outside of
PowerShell, and changing your execution policy is the least of your concerns.

If nothing else, this order of application demonstrates that PowerShell’s execution
policy was never intended to be a security boundary. We think of the execution policy
more like the little hinged plastic shield covering the Big Red Button that launches

often because of the server’s configuration tools, such as Server Manager or Win-
dows Admin Center—PowerShell is required for them to do their job.

This gets back to PowerShell’s security goal: to slow down an unintentional script exe-
cution by an uninformed user. Uninformed and unintentional shouldn’t be happening
on a server; if they are, you have what we refer to as a “human resources problem.”

60 CHAPTER 7 Scripts and security

the nuclear missiles. The execution policy, like that shield, is meant to get in the way
of some idiot who leans their elbow in the wrong place at the wrong time. It’s not
intended to stop someone from taking deliberate action, nor is it designed to stop an
intruder who breaks into the missile silo with bad intentions. The intruder can flip
back the cover as quickly as an authorized user, meaning the cover isn’t a security
mechanism. The security mechanisms would be card-keyed doors and armed guards,
not the little button cover.

7.2.2 Getting your policies

To see your current execution policy settings, use Get-ExecutionPolicy:

PS C:\> Get-ExecutionPolicy
Restricted

The cmdlet will return the effective policy based on your scope settings. In other
words, it will return the policy that the current shell instance will obey, regardless of
where that setting came from. You can also get the settings for all scopes like this:

PS C:\> Get-ExecutionPolicy -List
 Scope ExecutionPolicy
 ----- ---------------
MachinePolicy Undefined
 UserPolicy Undefined
 Process Undefined
 CurrentUser Undefined
 LocalMachine Restricted

The policy scopes would be set via Group Policy, which we’re not using. In addition, it’s
worth noting that this list isn’t in order of application—the order of this list isn’t mean-
ingful. In this situation, the Restricted policy will apply, which we can verify:

PS C:\> C:\work\test.ps1
C:\work\test.ps1 : File C:\work\test.ps1 cannot be loaded because running
scripts is disabled on this system. For more information, see
about_Execution_Policies at https:/go.microsoft.com/fwlink/?LinkID=135170.

Naturally, we need to make a change if we want our scripts to run.

7.2.3 Setting an execution policy

The cmdlet to modify the policy is Set-ExecutionPolicy. You need to specify a policy
setting and, optionally, a scope. The default is the local machine. To run this com-
mand, you must have permission to modify the relevant scope. In other words, if
you’re trying to alter the local machine setting, you need to run the shell with the As
Administrator option because the local machine setting is stored in the machine con-
figuration JSON file located in Program Files, which only administrators can write to.
Note that you can’t change either of the Group Policy–managed settings this way; you

617.4 Running scripts

need to—obviously—use Group Policy for that. You also can’t change the process
scope’s execution policy; that must be established when you run PowerShell, not once
it’s already running and you’re inside it:

PS C:\> Set-ExecutionPolicy -ExecutionPolicy RemoteSigned
Execution Policy Change
The Execution Policy helps protect you from scripts that you do not trust.
Changing the Execution Policy might expose you to the security risks
described in the about_Execution_Policies help topic at
https:/go.microsoft.com/fwlink/?LinkID=135170. Do you want to change the
Execution Policy?
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "N"):

Answer Y at the prompt to make the change. The change is immediate. Note that a
normal user can change the execution policy for themselves or the process; that’s why
none of this is considered a security boundary.

7.3 PowerShell isn’t the default application
Remember, these settings prevent PowerShell scripts from accidental or unintentional
execution. So, what happens when Missy clicks the attachment in her email to check
the shipping status of her Amazon order? If it’s a PowerShell script, it won’t execute
automatically. By default, the associated application for a .ps1 file is in Notepad, not
PowerShell. When Missy clicks because she can’t help herself, the script will be dis-
played in Notepad. Sure, you can change this association, and some scripting editors
will associate themselves with .ps1 and the other filename extensions for script edit-
ing. This also applies to any PowerShell file in Windows Explorer: double-clicking will
open the file in Notepad.

 It’s possible to create an Execute association with these filename extensions (as
opposed to an Edit association). Doing so would make the files execute when double-
clicked. We think this is an awful idea, by the way.

7.4 Running scripts
Finally, assuming you’re configured to run scripts, you must provide the path to the
script file, even if you’re in the same directory. For example, suppose we have a test
script in the current directory that we try to run:

PS C:\work> test
test: The term 'test' is not recognized as the name of a cmdlet, function,
script file, or operable program. Check the spelling of the name, or if a
the path was included; verify that the path is correct and try again.

Nope. This is intended to prevent command hijacking, where someone or something
puts a malicious script in the folder that uses a common command name such as dir.
You need to tell PowerShell you intend to run a script:

62 CHAPTER 7 Scripts and security

PS C:\work> .\test
Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName
------- ------ ----- ----- ------ -- -- -----------
 2517 276 1146832 1082780 2,365.03 1328 1 dwm
 0 0 1884 748852 115.84 5408 0 Memory Compress…
 1538 208 992756 353264 4,789.05 8284 1 firefox
 483 62 215324 218868 169.59 12232 1 slack
 1999 111 202616 199176 945.55 4284 1 WINWORD

You aren’t required to include the file extension, but it never hurts. That way, there’s
no mistaking what script you intend to run. If you use tab completion, PowerShell will
add the filename extension anyway.

7.5 Recommendations
What do we typically recommend when it comes to execution policy? You may be
surprised:

 We suggest using AllSigned in cases where certificates will be used to control
script releases. This isn’t a security thing so much as a procedural thing; your
company decides that the signature in the script will certify the script as being

You are part of the security system
Keep in mind that you are a part of the overall system when it comes to security. “But
we have administrators who can’t be trusted to know when a script is safe to run!”
Well, that’s again what we call an HR problem—those people shouldn’t be DevOps
engineers.

That’s where command hijacking comes into play. It was a real problem in MS-DOS
back in the day due to how it prioritized things. If you ran Dir, it would first look for
batch files with that name, then executables, and then internal commands—or some-
thing like that. It was possible, in other words, to drop in an executable or batch with
the same name as an internal command and trick people into running the executable
or batch instead of the command.

With PowerShell, the trick is more obvious. Dir is almost alwaysa going to run Get-
ChildItem, whereas ./Dir would run Dir.ps1 from the current directory. But you
have to know the difference. The security “protection” doesn’t work if you don’t know
the difference or if you ignore it. You can still be tricked if you’re not vigilant because
you are integral to what makes the security work.

a It’s possible to make Dir run something other than Get-ChildItem. It’s even easy. Just redefine
the alias to run another command, or load an alternate command named Get-ChildItem. It’d
be incredibly easy, for example, for a piece of malware to inject this into your PowerShell profile
script, which is, after all, a plain-text document located in your personal Documents folder that you
obviously have full rights to. It runs every time you open the shell, and you’d never know anything had
gone wrong. That’s one argument for using the AllSigned execution policy—injecting stuff into
your profile would break the signature on it, causing an error when you opened the shell. Provided
your code-signing certificate wasn’t installed locally (which would be deeply inconvenient), or you
password-protected it (better idea), the injection couldn’t re-sign the script.

637.5 Recommendations

ready for production. This also helps clamp down on profile-script injection,
which we described in the sidebar in the previous section. AllSigned can also
be helpful on client computers where you need scripts to run (otherwise, stick
with Restricted) and where you want to impose limitations on which scripts
your users can run. Remember that a user running a script still can’t do any-
thing they don’t have permission to do and that a script isn’t the only way mal-
ware can take advantage of your users. This isn’t a security thing—it’s a minor
hurdle to stop someone from accidentally doing something they might regret.

 We tend to use RemoteSigned in most cases. It’s a good balance between incon-
venience and protection against accidental stupidity. Scripts downloaded through
a Microsoft application such as Internet Explorer, Edge, or Outlook will be
marked as remote by the application, meaning PowerShell won’t run them with-
out prompting the user. Of course, this isn’t a security feature—it’s just an extra
hurdle. We all know that when confronted with an “Are you sure?” prompt,
almost all users reflexively answer Yes, so this isn’t intended to stop anyone or
make them think twice. At most, it makes them think 1.1 times.

 We don’t see that much practical difference between RemoteSigned and
Unrestricted, except that most scripts accessed via a universal naming conven-
tion (UNC) will prompt under RemoteSigned and not under Unrestricted.

 We suggest Bypass when you’re not using AllSigned for one of the reasons
we’ve stated here and when you don’t want the sometimes false sense of security
that RemoteSigned and Unrestricted can present. Using Bypass says, “Hey, I
know this execution policy isn’t a security layer per se; I’m confident enough in
my other security measures, such as strict access control, that I don’t even want
to use this because I’m afraid some people might perceive it to be a security layer,
and I want to remove that option from their minds.”

Here’s why that last bullet is important: many so-called information security “profes-
sionals” won’t take the time to understand PowerShell’s execution policy. Here’s their
thought process:

1 In college, we learned that scripts were terrible for security.
2 The execution policy lets me shut down scripting.
3 Malware might not need scripting, but “defense in depth” means I shut down as

much as possible.
4 Therefore, we’ll use Restricted for our execution policy.

This thought process misses the idea that any malware author can bypass the Restricted
execution policy with two brain cells rubbed together. We challenge these “profession-
als” by asking, “Okay, how would you protect the environment if we forced you to set
the execution policy to Bypass?” Their answers range from outright proper—“Make
sure our firewalls are multilayered and that our antimalware defenses are updated and
multilayered”—to the outrageous—“Unplug all the power cords and run for the hills!”

64 CHAPTER 7 Scripts and security

Take the execution policy off the table, so to speak, as a security layer (because it isn’t
one), and start thinking about actual security policies.

Summary
The settings surrounding script execution in PowerShell are intended to be as restric-
tive as possible out of the box. Any changes you make will only relax these settings.
You should consider other typical Windows best practices such as least-use privilege,
email filtering, and good file security. You’ll want to use PowerShell scripts—that’s why
you’re reading this book. Your job is to make doing so as safe and secure as possible.
Hopefully, we’ve now given you some guidance in that direction. Your action plan for
this chapter is to figure out how you’ll apply these ideas in your organization.

Part 2

Welcome to our scripting journey’s dynamic and hands-on segment—
Building a PowerShell Script. In this part, we seamlessly transition from founda-
tional concepts to practical implementation, guiding you through the step-by-
step process of crafting robust PowerShell scripts. From immersing yourself in
the importance of design in chapter 8 to starting your scripting journey by mini-
mizing bugs and errors in chapter 9, subsequent chapters 10 to 16 propel you to
new heights in script development. You’ll progress to constructing basic func-
tions and script modules, dive deeper into advanced functions, and explore the
power of objects as script output. Then, you’ll achieve proficiency in using vari-
ous streams for input and output, master the art of documentation through
comments, and navigate the challenges of errors while gaining insights into
dealing with them effectively. Concluding this part is chapter 16, where you fill
out a manifest, understanding its significance in ensuring your scripts are well-
defined and ready for deployment. As you progress through these chapters, you’ll
build practical scripting skills and gain a deeper understanding of the strategic
thinking behind effective PowerShell script development. So, roll up your sleeves
and dive into the code, and let’s build powerful PowerShell scripts together!

67

Always design first

Most of our scripts start as a simple one-line command to do a thing, such as creat-
ing a new user. The script will read from a CSV, make the new users, and fill in all
the information you received from HR. You save the script in your C: drive some-
where and move on to the next fire.

 Does this sound familiar? There are two types of scripters and toolmakers in the
world: those who plan and those who shoot from the hip. Our goal by the end of
the book (hopefully even this chapter) is to make a tool designer. Look at it from
the process in reverse. What is the desired outcome, and how do I get there? Then,
fill in the blanks from there.

 In this chapter, we’ll lay out some of the core PowerShell tool design principles
to help you stay on the path of “Toolmaking Righteousness.” To be clear, we’re
building on what we laid out in part 1 of this book. Now, we’re ready to provide
some more concrete examples.

8.1 Tools do one thing
If you’ve ever heard James, Don, or Jeff talk about toolmaking or scripting, you’ve
heard each of us get on our soapbox and yell from the top of the rafters that a
script should perform a single task. It doesn’t create the Active Directory user
(AD user) and an M365 mailbox—that is two tasks and should thus be separated.
This has been the design of PowerShell since the beginning. Look at all the com-
mands that ship with PowerShell natively; they do one thing. Let’s look at Get-
Service, it doesn’t stop or start them. It retrieves information about the ser-
vice(s) and returns the data to you. If you want to stop the service, use a different
Stop-Service command.

68 CHAPTER 8 Always design first

 This concept is one we see newcomers violate the most. For example, we’ll see folks
build a command with a -ComputerName parameter for accepting a remote machine
name and a -FilePath parameter so they can alternately read computer names from
a file. From PowerShell’s perspective and ours, that’s dead wrong because it means
the tool is doing two things instead of just one. A correct design to follow the para-
digm would be to stick with the -ComputerName parameter and let it accept strings
(computer names) from the pipeline. You could also feed it names from a file using a
-ComputerName (Get-Content servers.txt) parenthetical construct, or you could
define the -ComputerName parameter to accept input by value:

Get-Content servers.txt | Get-ServerInfo

The Get-Content command exists for the sole purpose of getting data from a file, so
why should you create something that does that? Spend time on the important things,
and stop reinventing the wheel. The good folks at Microsoft spent a lot of time pro-
ducing meaningful PowerShell commands.

 Let’s explore that antipattern for a moment. Here’s an example of using a com-
pletely fake command (meaning, don’t try this at home) in two different ways:

Specify three computer names
Get-CompanyStuff –ComputerName ONE,TWO,THREE
Specify a file containing computer names
Get-CompanyStuff –FilePath ./names.txt

That approach overcomplicates the tool, making it harder to write, harder to debug,
harder to test, and harder to maintain. We’d go with this approach to provide the
same effect in a simpler tool:

Specify three computer names
Get-CompanyStuff –ComputerName ONE,TWO,THREE
Specify a file containing computer names
Get-CompanyStuff –ComputerName (Get-Content ./names.txt)
Or if you were smart in making the tool...
Get-Content ./names.txt | Get-CompanyStuff

Those patterns do a much better job of mimicking how PowerShell’s core commands
work. But let’s explore one more antipattern: “But I have the computer names in a
specially formatted file that only I know how to read.” Folks will convince themselves
that this is okay:

Specify three computer names
Get-CompanyStuff –ComputerName ONE,TWO,THREE
Specify a file containing computer names
Get-CompanyStuff –FilePath ./names.dat

TIP Did you know that PowerShell can’t read a .DAT file natively? This was
introduced in PowerShell 6.

698.2 Tools are testable

8.2 Tools are testable
Another thing to bear in mind is that—if you’re trying to make tools like a real pro—
you’ll want to create automated unit tests for your tools. We’ll get into how that’s done
in chapter 20. There is a huge debate in the PowerShell community regarding testing.
Some community members say you should write your test first and then write the code
after the fact. This ensures that you’re working toward your result. The other half says
that you should get your code working correctly first, and then write your tests to
ensure it keeps working correctly once you add new functionality.

 We can’t tell you which method is correct because it’s a personal preference you
must decide on. But from a design perspective, you want to make sure you’re design-
ing tools are, in fact, testable. Again, one way to do that is to focus on tightly scoped
tools that do just one thing. The fewer pieces of functionality a tool introduces, the
fewer things and permutations you’ll have to test. The fewer logic branches within
your code, the easier it will be to thoroughly test your code using automated unit tests.

 For example, let’s say you’re tasked with creating a new process for onboarding
new employees. You could create a monolithic 100+ line script that will read the CSV
from HR, create a login name that fits your company standards, check AD to see if
that name already exists, create the user in AD with all the information you received
from HR, create the user’s mailbox in Microsoft 365, add the user to SharePoint
online groups, and so on. You can see where this is going. Now, here’s the bad news:
this is the exact thing we’re talking about. This script does way too many things and
needs to be broken out into four different scripts, as shown in figure 8.1.

You also want to avoid building functionality into your tools that will be difficult to
test. For example, you might decide to implement some error logging in a tool. That’s
great—but if that logging is going to a SQL Server database or a SIM tool, it will be
trickier to test and make sure the logging is working as desired. Logging to a file
might be easier because a file would be more accessible to check. Easier still would be
to write a separate tool that handles logging. You could then test that tool inde-
pendently and use it in your other tools. This gets back to the idea of having each tool
do one thing, and one thing only, as a good design pattern.

Figure 8.1 Breaking out a script
into multiple parts

70 CHAPTER 8 Always design first

8.3 Tools are flexible
You want to design tools that can be used in various scenarios. This often means wir-
ing up parameters to accept pipeline input. For example, suppose you write a tool
named Set-MachineStatus that changes some settings on a computer. You might
specify a -ComputerName parameter to accept computer names. Will it accept one
computer name or many? Where will those computer names come from? Always
assume there will be more than one computer name, if you can, and don’t worry
about where they come from. From a design perspective, you want to enable a variety
of approaches.

 It can help to sit down and write some examples of using the command that you
intend to work. These can become help-file examples later (covered in chapter 14), but
in the design stage, they can help ensure you’re designing to allow all of them. For
example, you might want to be able to support these usage patterns:

Get-Content names.txt | Set-MachineStatus
Get-ADComputer -filter * | Select -Expand Name | Set-MachineStatus
Get-ADComputer -filter * | Set-MachineStatus
Set-MachineStatus -ComputerName (Get-Content names.txt)

That third example will require some careful design because you’re not going to be able
to pipe an AD computer object to the same -ComputerName parameter that also accepts
a String object from Get-Content! You may have identified a need for two parameter
sets, perhaps one using -ComputerName <string[]> and another using -InputObject
<ADComputer>, to accommodate both scenarios. Creating two parameter sets will make
the coding and the automated unit testing a bit harder—so you’ll need to decide
whether the tradeoff is worth it. Will that third example be used so frequently that it
justifies the extra coding and test development, or will it be a rare enough scenario to
exclude it and instead rely on a similar second example?

 The point is that every design decision you make will affect your tool’s code, its
unit tests, and so on. It’s worth thinking about those decisions up front, which is why
it’s called the design phase!

8.4 Tools look native
Finally, be careful with tool and parameter names. We went over this in part 1, but it’s
worth repeating because we see people get “creative” all the time. Tools should always
adopt the standard PowerShell verb-noun pattern and should only use the most appro-
priate verb from the list returned by Get-Verb. Microsoft also publishes that list on
Microsoft Learn (http://mng.bz/A8rE); the online list includes incorrect variations
and explanations that you can use to check yourself. Don’t beat yourself up too hard
over fine distinctions between approved verbs, such as the difference between Get and
Read. If you check out that website, you’ll realize that Get-Content should probably
be Read-Content; it’s likely a distinction Microsoft came up with after Get-Content was
already in the wild.

http://mng.bz/A8rE

718.5 For example

 We also recommend that you get in the habit of using a short prefix on your com-
mand’s noun. For example, if you work for Globomantics, Inc., you might design com-
mands named Get-GloboSystemStatus rather than just Get-SystemStatus. The prefix
helps prevent your command name from conflicting with those written by others
and will make it easier to discover and identify commands and tools created for your
organization.

NOTE One reason we went on about native patterns in part 1 of this book is
that they’re so important. Don’t ever forget that the existing commands, partic-
ularly the core ones authored by the PowerShell team at Microsoft, represent
their vision for how PowerShell works. Break with that vision at your peril!

Parameter names should also follow native PowerShell patterns. Whenever you need a
parameter, look at a bunch of native PowerShell commands to see what parameter
name they use for similar purposes. For example, if you needed to accept computer
names, you’d use -ComputerName (notice it’s singular!) and not some variation like
“MachineName”. If you need a filename, that’s usually -FilePath or -Path on most
native commands.

8.5 For example
Before you can even start making design decisions, you must look at the business
requirements. Then, try to translate those business requirements to usage examples so
it’s more apparent to you and your team how a tool might be used. If other stakehold-
ers are involved—such as the people who might consume this tool once it’s finished
(i.e., help desk)—you can get them to sign off on this functional specification so that
we can go into the design phase with clear, mutual expectations for the new tool. In
addition, try to capture problem statements that this new tool is meant to solve because

The verb quandary
One area where you can get a bit wound up is in choosing the correct verb for your
command name. Honestly, Microsoft probably has too many verbs to choose from.
Although we’re sure someone in the company had a clear idea of their differences,
that hasn’t always been communicated well to the PowerShell public. For example, if
you’re writing a command that will retrieve information from a SQL Server database,
is the command name Get-MyWhatever-Data or Read-My-WhateverData? The com-
pany offers guidance, stating, “The Get verb is used to retrieve a resource, such as
a file. The Read verb is used to get information from a source, such as a file.” This
implies Get would be used to get a file, meaning an object representing the file itself,
whereas Read would be used to retrieve the file's contents. Although Get-Content is
a thing, Microsoft didn’t even take its own advice.

Our advice? Do what seems most consistent with whatever’s already in PowerShell.
If you’re truly stuck, post a question in the forums at PowerShell.Org to get a little
feedback from experienced pros.

72 CHAPTER 8 Always design first

those sometimes offer a clearer business perspective than a specification that some-
one else may have written. Let’s consider an example now.

 Business Problem: We have a lot of different computers deployed in our company,
which have other hardware vendors, different versions of Windows, different configu-
rations, and so on. When users call the help desk, it’s often difficult for the techni-
cians to figure out what kind of computer they’re dealing with. Users aren’t always
aware of details such as model numbers, OS versions, installed RAM, and so on. We
have a configuration management system the help desk can check, but it isn’t always
up to date or accurate. We likely want a tool that the help desk can use to quickly
query a computer, if it’s online, and get some essential information about its OS and
hardware configuration. In some cases, we have downtime and can query that infor-
mation from multiple computers and double-check the accuracy of the configuration
management system. The help desk can update that database if it needs updating.

Taking the last part of the previous sidebar to heart would lead us to more detailed
questions, asking for specifics about what the tool needs to query. Suppose the answer
came back as follows:

Be careful of context.
When you start designing tools, making business-level problem statements is fine.
That’s a large part of what the design is for, after all! Statements like, “When users
call the help desk, it’s often difficult for the technicians to figure out what kind of com-
puter they’re dealing with,” are fantastic.

Stating desired outcomes, such as when we wrote, “We’d like a tool that the help
desk can use to query a computer quickly,” is also fine—it defines a business need.
But not every business statement must be something you try to solve with a single
tool or command. You may need a suite of tools, which could be packaged as a mod-
ule . . . but we’re getting ahead of ourselves.

We’ve discussed the need for tools to be as detached as possible from a particular
context. Yet, our business statement has provided a very clear context: “We want
technicians to query things.” That context leads to certain assumptions, like, “The
output needs to be human-readable,” and, maybe, “Our technicians aren’t that expe-
rienced, so a GUI will be needed for them to operate this thing.” This is good back-
ground information, but it doesn’t mean you’ll solve it all with a single tool.

Our complete business statement implies creating a tool to retrieve data and per-
haps a controller script to provide the help desk with an input/output interface. The
tool doesn’t need to worry about how the technician uses it or what the technician
will see; the controller can worry about those context-specific things and use the tool
under the hood to get the data.

Never lose track of the tool/controller design pattern. Get used to reading business
statements that will ultimately need tools and controllers, and understand which ele-
ments of a business solution will be best solved by each type of script.

738.5 For example

 Computer hostname
 Manufacturer
 Model
 OS version and build number
 Service pack version, if any
 Installed RAM
 Processor type
 Processor socket count
 Total core count
 Free space on the system drive (usually C:, but not always)

That’s fine—we know we can get all that information somehow. We know we’re going
to write a tool called Get-MachineInfo, and it will probably have at least a -Computer-
Name parameter that accepts one or more computer names as strings. Thinking ahead,
we might also start making notes for an Update-OrgCMDatabase command, which
could consume the output of Get-MachineInfo and automatically update the organi-
zation’s configuration management database. Nobody asked for that, but it’s implied
in the business problem statements, and we can see them asking for it once we deliver
the first tool—“Hey, because the tool gets all the data, is there any way we can have it
just push that into the CM database?” We’ll keep that in mind as we design the first
tool—we want to ensure that the tool is outputting something that could be easily con-
sumed by another command sometime in the future.

 We’ll assume that some computers won’t respond to the query, so we’ll design a
way to deal with that situation. We’ll also assume that we have some old versions of
Windows out there, so we’ll make sure the tool is designed to work with as old a ver-
sion of Windows as possible, as well as the latest and greatest.

 Our design usage examples might be pretty simple:

Get-MachineInfo -ComputerName CLIENT
Get-MachineInfo -ComputerName CLIENTA,CLIENTB
Get-MachineInfo -ComputerName (Get-Content names.txt)
Get-MachineInfo -ComputerName (Get-ADComputer -id CLIENTA |
Select -Expand name)
Get-Content names.txt | Get-MachineInfo
Get-ADComputer -id CLIENTA | Select -Expand name | Get-MachineInfo

The second chunk of examples will all require the same design elements, whereas
the last chunk of examples will all be made possible by another set of design ele-
ments. That’s no problem. The output of these should be pretty deterministic. Given
a specific set of inputs, we should get the same output, which will make this a fairly
straightforward design for which to write unit tests. Our command is only doing one
thing with very few parameters, which gives us a good feeling about the design’s
tight scope.

74 CHAPTER 8 Always design first

Writing usage examples first can also help you avoid bad design decisions. If you’re
struggling to write all the examples you need, and you still keep coming up with an
overly long or overly complicated list, then you know you’re on the wrong track
entirely. It might be worth sitting down with a colleague to try and refactor the whole
project to keep it simpler.

 We’d return that set of examples to the team and ask what they think. Almost
invariably, doing so will generate questions:

 How will we know if a machine fails?
 Will the tool keep going?
 Will the tool log that information anywhere?

Okay—we need to evolve the design a bit. We know that we need to keep going in the
event of a failure and give the user the option to log failures to, perhaps, a text file:

Get-MachineInfo -ComputerName ONE,TWO,BUCKLE,SHOE `
" -LogFailuresToPath errorlog.txt

Provided the team is happy with a text file as the error log, we can include that in the
design. If they wanted something more complicated—the option to log to a database
or an event log—then we’d design a separate logging tool to do all of that. For the
sake of argument, though, let’s say they’re okay with the text file. At this stage, we
don’t figure out how we’ll do all that; right now, we’re just designing the thing.

 Let’s say that the team is satisfied with these additions and that we have our desired
usage examples locked down. We can now get into the coding. But before we do, why
don’t you take a stab at your design exercise?

The beauty of usage examples in design
Stating usage examples as part of your tool design is a wonderful idea. For one thing,
it helps you ensure you’re not bleeding from tool design into controller design. If your
usage examples start to take up 10 sheets of paper and look complicated, then you
know you’re probably not scoping your tool’s functionality tightly enough, and you
might be looking at several instruments instead of just one.

Usage examples can also become part of your eventual help file. There’s a school
of thought that you should start tool design by writing the help file. The help file can
then exist as a functional specification, which you code to. Similarly, writing usage
examples can help support test-driven development (TDD), in which you write auto-
mated tests first to sort of specify how your tool should work, and then you write
the code.

758.6 Your turn

8.6 Your turn
If you’re working with a group, this will make a great discussion exercise. You won’t
need a computer, just a whiteboard or a pen and paper. The idea is to read through
the business requirements and develop some usage examples that meet the require-
ments. We’ll provide all the business requirements in a single statement so you don’t
have to “go back to the team” and gather more information.

8.6.1 Start here

Your team has asked you to design a PowerShell tool that will help them automate a
repetitive, boring task. They’re all skilled in using PowerShell, so they need a com-
mand or set of commands that will help automate this task.

 You’ve been lazy about changing service logon passwords. Many have been
switched over to group Managed Service Accounts (gMSA), so you don’t need to, but
you have a lot of services—many of which run on multiple computers in a cluster—
that haven’t had a password change in years. The native Set-Service command
doesn’t do it. You’d like a tool to let you change the logon user account and the pass-
word for a single service on one or more machines simultaneously. If any device fails,
you must know how to handle it manually. Displaying onscreen and logging into a text
file is okay.

 This needs to run on a variety of Windows Server versions. You don’t usually need to
script this, so the password can be provided as a parameter in clear text on the command

Designing sets of commands
The foregoing discussion is great when you’re writing a command to do something
self-contained, such as retrieving management information from multiple computers.
There’s a slightly different discussion, however, when you start writing sets of com-
mands to help manage a large system.

For example, suppose you want to write a set of commands to help manage a cus-
tomer information-tracking application. What commands might you need to write?

Start by inventorying the nouns in the system. What are the things that the system
works with? Users? Customers? Orders? Items in an order? Addresses? Write down
that list somewhere.

Next, look at each noun, and decide what the system can do with it. For users, what
tasks does the system offer? Creating new ones? Removing them? Modifying exist-
ing ones? Listing them all? Those give you your verbs—New, Remove, Set, and Get,
in this case, yielding commands such as New-SystemUser, Remove-SystemUser,
Set-SystemUser, and Get-SystemUser (assuming System is a useful prefix for your
organization).

This little inventory exercise helps ensure you’re not missing any key functionality.
Having the command list doesn’t automatically mean you’re going to write all those
commands, but it gives you a checklist to prioritize and work against.

76 CHAPTER 8 Always design first

line as a parameter. You’d like the command to output something no matter what
happens—such as the name of each computer and whether it succeeded, the service it
was changing, and the logon account it’s now using (whether that was changed or
not). You’ll usually want that output onscreen, in a simple HTML report, or in a CSV
file you can load into Microsoft Excel.

8.6.2 Your task

You should design the tool to meet the team’s business requirements. You’re not writ-
ing any code at this point. When creating a new tool, you must consider who will use
it, how they might use it, and their expectations. And, the user might be you! The end
result of your design will be a list of command usage examples (like those we’ve shown
you), which should illustrate how the tool will solve each of the team’s business needs.
Including existing PowerShell commands in your examples is fine if those commands
play a role in meeting the requirements.

TRY IT NOW Stop reading here, and complete the task before resuming.

8.6.3 Our take

We’ll design the command name as Set-TMServiceLogon. The TM stands for toolmak-
ing because we don’t have a specific company or organizational name. We’ll design
the following use cases:

Set-TMServiceLogon -ServiceName LOBApp
 -NewPassword "P@ssw0rd"
 -ComputerName SERVER1,SERVER2
 -ErrorLogFilePath failed.txt
 -Verbose

We intend that -Verbose will generate onscreen warnings about failures and -Error-
LogFilePath will write failed computer names to a file. Notice that to make this speci-
fication easier to read, we’ve put each parameter on its line. The command won’t
execute exactly like that, but that’s fine—clarity is the idea at this point:

Set-TMServiceLogon -ServiceName OurService
 -NewPassword "P@ssw0rd"
 -NewUser "COMPANY\User"
 -ComputerName SERVER1,SERVER2

This example illustrates that -ErrorLogFilePath and -Verbose are optional, as is
-NewUser; if a new user isn’t specified, we’ll leave that property alone. We also want to
illustrate some of our flexible execution options:

Get-Content servers.txt |
 Set-TMServiceLogon -ServiceName TheService -NewPassword "P@ssw0rd"

This illustrates our ability to accept computer names from the pipeline.

77Summary

 Finally, we’ll illustrate two more things with the following:

Import-CSV tochange.csv | Set-TMServiceLogon | ConvertTo-HTML

First, this shows we can accept an imported CSV file, assuming it has columns named
ServiceName, NewPassword, ComputerName, and, optionally, NewUser. Second, our
output is consumable by standard PowerShell commands such as ConvertTo-HTML,
implying that Format- and Export- commands will also work.

Summary
We dived into the fundamental principles of PowerShell tool design, emphasizing the
importance of meticulous planning and adherence to best practices. This chapter
emphasized the significance of tools performing singular tasks, avoiding the trap of
multifunctional scripts that complicate coding, debugging, testing, and maintenance.
Through detailed examples and discussions, we elucidated the essence of testability,
flexibility, and native appearance in tool design, urging scripters to anticipate diverse
scenarios and streamline their scripts accordingly. By articulating business requirements
into clear usage examples, we equipped you with a structured approach to design, lay-
ing a solid foundation for effective PowerShell script development.

Big designs don’t mean big coding
We usually create initial designs that are all-encompassing. That doesn’t mean we
immediately start implementing the entire design. In software, there’s a difference
between vision and execution.

We’re just talking about PowerShell commands, so there’s perhaps no need to go all
philosophical on you, but this is an important point. You may not want to implement
error logging in your command right now, and that’s fine. That doesn’t mean you can’t
plan for it to someday exist. Planning—in other words, having a vision for your code—
means you can take that into account as you write the code you do need right away.

If you have no plans to log failed computers right now, but you know you will someday,
you can implement a code structure that’ll be easier to add logging to in the future.
Your execution today, in other words, doesn’t have to be the entire vision. You can
create your vision now and then execute it in increments as you have time and need.

78

Avoiding bugs:
Start with a command

Before ever firing a script editor, we start in the basic PowerShell command-line
window. This is your lowest common denominator for testing, and it’s a perfect way
to ensure the commands your tool will run are correct. It’s way easier to debug or
troubleshoot a single command from an interactive console than debugging an
entire script. By “a single command,” we mean a PowerShell expression—a single
thing that we can manually type into the console to see if we’ve got the correct syn-
tax. You’ll start to notice a theme from here on out. Start small (with a single com-
mand), get that working, and start building from there. Don’t try to write your
entire script all at once. This will make it almost impossible to debug.

9.1 What you need to run
If you’ve already read the previous chapter, then you know that in the example sce-
nario, you’ve been asked to develop a tool that will query the following information:

 Computer hostname
 Manufacturer

This is by design
One of the cool parts about PowerShell is that you can open a console, run com-
mands, and get immediate results (good or bad). Traditionally, programmers have
had to write code as best they could, compile it, and possibly even code up a test
harness so that they could test their code. Take advantage of PowerShell’s imme-
diacy to reduce your overall workload!

799.1 What you need to run

 Model
 OS version and build number
 Service pack version, if any
 Installed RAM
 Processor type
 Processor socket count
 Total core count
 Free space on the system drive (usually C:, but not always)

It would be best if you planned on using a Common Information Model (CIM)
because Windows Management Instrumentation (WMI) was deprecated in Windows
PowerShell. You’ll also need to log information to a text file as well. You’ll need to do
more regarding the tool itself, but these are the basic units of functionality you need
to figure out.

 At this point, we’re in the design phase. The goal in this chapter, then, is to iden-
tify the moving parts of your script. Yeah, the script will involve some logic and stuff,
which will control what commands are eventually executed, but we’re not to that
point yet. First, you want to figure out which commands to run, how to run them, and
whether you’ve got the right syntax.

 Speaking of goals, let’s be specific about what you need to figure out:

 What command or commands will you need to run?
 What classes of data will you need to query?
 What modifications will you need to make to try both protocols?
 How do you log errors to a text file?

The discovery process
We won’t go through the whole process of how to find what command to run because
about a quarter of Learn PowerShell in a Month of Lunches, Fourth Edition (Manning,
2022) is devoted to that process, and we assume you’ve read that or have equivalent
education or experience.

But it’s super important that you get good at the command-discovery process. If every
toolmaking project you undertake has to start with a three-week Google-based inves-
tigation just to figure out what commands you’ll need to make your tool work, you’ll
be inefficient and frustrated. Frankly, you need some more basic PowerShell experi-
ence before diving into toolmaking.

It’s equally vital that you get comfortable experimenting at the command line. Read
examples from the help files, and try things. In classes and at conference presenta-
tions, people always ask, “What if I try an IP address instead of a computer name?”
Well, you’re sitting in front of the computer—try it. See what happens. Playing around
is how we learn half of what we know (“messing around” covered the other half), so
get used to experimenting and don’t worry about trashing your desktop. Spin up a test
virtual machine (VM) with Windows 11 or Windows Server 2022, and go to town.

80 CHAPTER 9 Avoiding bugs: Start with a command

Sure, there’s a lot that can go wrong here. That’s part of the process. You might get the
wrong command to start with. You might even use the wrong command, and that’s
okay as well. Once you find the correct command, you might make wrong assump-
tions about the results it creates—and those flawed assumptions will create bugs fur-
ther down the line. The command might work fine locally but not against a remote
computer—and you need to figure that out before you do anything else. The com-
mand might work against some versions of Windows but not others, and you need to
solve that problem too. These are all things to get out of the way before you open a
script editor. There would be far fewer bugs in the world if people just tested stuff
thoroughly in an interactive console before they started coding.

NOTE Most .NET Framework developers like PowerShell because it lets them
interactively play with .NET. They don’t have to write a huge program, com-
pile it, and run it to see whether they’ve got the right idea for their code—
they can try it quickly in PowerShell, validate their assumptions, and code
with confidence. It’s the same thing for PowerShell scripters—test it in the
console, get it working in every way it will need to work, and then start script-
ing. Don’t worry—we’ll go into more depth on debugging your script with
Visual Studio Code (VS Code) later in this book.

9.2 Breaking it down, and running it right
If you don’t already have the PowerShell console open, go ahead and do that (either
with Windows Terminal or PowerShell console). Notice we didn’t say VS Code. Let’s
take a good, concrete example. Suppose we hop into the PowerShell console and
run this:

Get-CimInstance -ClassName Win32_ComputerSystem

TRY IT NOW By the way, feel free to follow along and try these commands.
Nothing in this chapter will break anything, and it’s a good experience.

Did it work? Have we successfully tested our command the way our script will use it?
No, we haven’t! That’s because our script will need to run this command against remote
computers, but we’ve only run it against the local computer here. It’s not the same
thing at all, and running against a remote computer brings in a lot more complexity.

 Here’s a better test in the console because it’s closer to what our script will proba-
bly need to run (assuming SRV2 is a legitimate server name in our environment that
we have admin access to, of course, or substitute your computer name):

Get-CimInstance -ClassName Win32_ComputerSystem -ComputerName SRV2

The point is to identify the moving parts of your script and make sure you’re thinking
about how your script will run them so that you can test them from the console exactly
the same way. We should run this against a few computers with different versions of
Windows too. (It pains me to say this, but I know a few of you are still running Windows

819.2 Breaking it down, and running it right

XP for whatever business reasons you may have. It’ll fail if you’re still using those dino-
saurs, and now’s the time to discover that fact.)

TIP We can’t tell you how many times we’ve helped people in the forums at
PowerShell.org who’ve started up a script editor and begun typing. We invari-
ably end up asking them to run some command “from the console” so that
they can more clearly see what they’re doing wrong. You’ll save a ton of time
if you don’t get ahead of yourself!

There’s more to it than just running commands and hoping you don’t get any errors.
You need to look at the results of those commands. Are you hoping the previous com-
mand returns a version number for Windows? Well—you should run the command
and see what happens. Because many commands have a prettified default onscreen
display, we always recommend piping the results to fl * (Format-List *) so that you
can see the full, unadulterated output right in front of you. Which properties will
you use? What do they contain? Do you know what those contents mean? Do they
differ from computer to computer in any way that will affect the script you’re plan-
ning to write?

The importance of a test environment
It would be best if you had a safe place to play.

Discovering how to use PowerShell commands invariably involves experimentation,
and your organization’s production network is likely not the best place for that to hap-
pen. That’s why virtualization is so fantastic—using a product like VMware Worksta-
tion, VMware Fusion, VirtualBox, Parallels, Hyper-V, Azure Virtual Desktop, and so on,
you can run multiple computers on a single machine and have your own test lab. You
can also set up test labs (with permission) on your organization’s virtual infrastruc-
ture, use cloud-based environments such as Microsoft Azure or Amazon Web Ser-
vices (AWS), and so on.

We sometimes run into frustrated individuals trying to learn this stuff independently
who can’t afford an Azure or AWS subscription. They don’t have an organization’s
resources to rely on, and perhaps their home computer doesn’t have the juice to run
two or three VMs. Unfortunately, that’s kind of the price of admission. PowerShell and
toolmaking comprise a business-class set of technologies that require business-
class resources. It can be challenging to learn on your own, but there isn’t always a
super-inexpensive way to experiment with these kinds of tasks.

Once you have some decent hardware with 8–16 GB of RAM and good disk space, if
it at least runs Windows 10 or Windows Server 2016, you can use the AutomatedLab
project from https://AutomatedLab.org to make it easy to spin up preconfigured test
environments.

https://AutomatedLab.org

82 CHAPTER 9 Avoiding bugs: Start with a command

9.3 Running commands and digging deeper
We’ll assume that you already know how to run PowerShell commands. If that’s not
your strong suit, please stop and read Learn PowerShell in a Month of Lunches, Fourth
Edition (Manning, 2022) because it’s all about discovering and running commands.
Our point is that you should test and ensure you know how to accomplish everything
your tool needs to accomplish by manually running commands in the command-
line window.

 In this specific case, you also want to make sure you know how to retrieve all the
information in your list reliably, which will involve more than one CIM class. You’ll
need Win32_OperatingSystem and Win32_ComputerSystem at the least. You’ll also
have to use one of those to determine which drive is the system drive and then retrieve
its instance of Win32_LogicalDisk to get the free space. Again—you should know how
to do these things already if you’re reading this book, so we won’t walk through that
entire discovery process.

 Our “discovery and test” process is about more than just finding what commands
to run and what syntax to use. As suggested in the previous section, we also spend
time looking at the output of those commands. In which exact property of Win32_
OperatingSystem or Win32_ComputerSystem will you find the system drive? Is it for-
matted as C:, C, or C:\? Or is it a number, such as 0 or 1? What value will you need to
use to get the corresponding Win32_LogicalDisk instance? The idea is to figure out
all of your “How do I . . .?” questions up front, test your answers at the console, and go
into the actual scripting process with working commands, notes, and everything else
you need to do it right the first time.

TIP If you don’t use a note-taking application, get one. As you start to figure
out what you’ll need to do in a script, it’s incredibly valuable to have a place
to jot down electronic notes. You’ll often want to copy and paste things from
those notes, which is why a big spiral notebook and a pen aren’t as useful.

You’re going to use Get-CimInstance to do the querying, and, because you’ll eventu-
ally end up querying multiple classes, you’ll need to make multiple queries. Might
that be slow? We’d test it. We’d also take the time to read the help—the full help,
including the examples—and in doing so, we’d discover a way to create and reuse a
persistent connection, making multiple queries faster. We love faster! Therefore,
you’ll use New-CimSession and Remove-CimSession to create (and then remove),
respectively, a persistent connection to each computer to run all the queries over one
connection. You’ll need to be able to detect errors if the connection doesn’t work.
Review the help for New-CimSession if you’re unfamiliar with those tasks—it’s time to
figure it all out.

TRY IT NOW Seriously, read the help. Do it right now. How would you go
about creating and removing a persistent session? Try it—see if you can make
it work, and query an instance of Win32 _LogicalDisk from a remote com-
puter or two.

839.6 Your turn

9.4 Process matters
We mentioned this at the beginning of the chapter as an aside, but it’s so important
that it bears reinforcement. The process of discovery, testing, and refining your com-
mand should continue throughout your development process. We’ve seen students in
class spend an hour writing lines and lines of code in VS Code. Then they run it, and
it fails. And they curse. Despite our best efforts, they ignore our advice to discover,
test, and code as you write your script or tool. Discover/test/code is a great reason to
use the PowerShell extension in VS Code. You can find the commands you need,
enter them, and run them more easily within the editor. If it fails, you can fix it then
and there, and repeat the process. Once you get it right, copy and paste the working
code into your script, and you’re on your way. Then, move on to the next part of your
script. PowerShell is immediate. Please take advantage of it.

9.5 Know what you need
We’ve developed a little saying that isn’t reassuring, but it’s a hard truth you can’t
avoid: “PowerShell is easy. Windows is hard.” The point is that many of us—thanks to
years of being insulated from the operating system by a GUI—don’t know what Win-
dows is doing under the hood. Do you know the difference between a partition, a disk,
a logical disk, and a disk volume? The OS knows, but it doesn’t always surface those
distinctions in its GUI. If you don’t know the difference, then working from Power-
Shell—a lower-level form of control than the GUI—will be hard.

 This comes up all the time in the forums on PowerShell.org. Someone will ask for
help with a block of code, and they’ll paste in what amounts to a C# program because
they’re using PowerShell to access a bunch of raw .NET Framework stuff. In that case,
PowerShell isn’t the question—it’s all the esoteric .NET things. Or someone will ask
something like, “Where can I find a list of events from USB device insertions?” That’s
a spot-on question. It’s not a PowerShell question, but it highlights what is difficult:
dealing with the underlying operating system.

 This is why the discover/test/code process is so vital. First, you’ve got to figure out
what to do and then how to do it, and the interactive PowerShell console is the place
for that once you know what to do and how you can assemble what you’ve done into a
script using your script editor.

9.6 Your turn
The previous chapter included an exercise for you, and this one picks up where it left
off. This is where you’ll get to practice what we’ve preached in this chapter: making
sure you know how to accomplish everything your tool will need to do by starting in
the PowerShell command-line window. If there’s anything about the tasks you don’t
know how to do, figure it out before you leave this chapter.

84 CHAPTER 9 Avoiding bugs: Start with a command

9.6.1 Start here

Remember that you’ve designed a tool that will change service logon names and pass-
words. You won’t be able to use Set-Service for this (it doesn’t offer the ability to
change those things); you’ll need to use CIM.

9.6.2 Your task

Your main task is to discover the CIM class that will let you change a service’s logon
name and password. A search engine is probably the best way to start looking for this,
and we’ll give you one hint: the class name starts with Win32_.

 You also need to make sure you can use this class to accomplish the task. You’ll
need to invoke something in CIM. Here’s a tip: when experimenting with services, we
usually play with the Background Intelligent Transfer Service (BITS) or the Print
Spooler. Messing with it won’t crash Windows, which is great. But if you’re working on
a non-lab computer, remember that BITS is what makes Windows Update and some
other essential things work. After you’ve finished playing with BITS, reset it so it’s log-
ging on as LocalSystem with no password set.

DO IT NOW Stop reading here, and complete the task before resuming.

9.6.3 Our take

We found that the Win32_Service class will do the trick. We learned this, honestly, by
hopping on Google, entering the change windows service password, and looking for
a Microsoft.com page (http://mng.bz/1noL) in the results.

 We also ran Get-Command -verb invoke in PowerShell, given that invoke was a not-
so-subtle hint in the lab assignment. We found Invoke-CimMethod, which we’ll use. We
read its help file and came up with the following command to change the startup user-
name and password for the BITS service:

$CimMethodParameters = @{
 Query = "SELECT * FROM Win32_Service WHERE Name='BITS'"
 Method = "Change"
 Arguments = @{
 'StartName' = 'DOMAIN\User'
 'StartPassword' = 'P@ssw0rd'
 }
 ComputerName = $env:computername
}
Invoke-CimMethod @CimMethodParameters

We won’t lie—coming up with that took a bit of experimentation and searching (yay,
Google!). We wound up using -Query because we need a specific instance of Win32_
Service, not all the services on the computer. In addition, we noticed a -Computer-
Name parameter that should be useful later when we’re targeting remote machines. To
make sure we’re using it properly, we’ll use the environmental variable for the local

http://mng.bz/1noL

85Summary

computer name. This should verify the complete syntax we’ll eventually incorporate
into our tool.

 DOMAIN is valid in our test environment, but obviously, you’d need to use a proper
username in that DOMAIN\USERNAME form. We noted that the command returned
an object, and ReturnValue was 0 for success and 22 when we provided an invalid
username. The Change method’s web page, which we gave a link to earlier, includes all
the valid return codes. We could capture that return object into a variable to ensure
each computer succeeds when we write our tool.

 We were, by the way, careful to reset the service:

Invoke-CimMethod -Query "SELECT * FROM Win32_Service WHERE Name='BITS'"
 -Method Change
 -Arguments @{'StartName'='LocalSystem'}

Take the time to follow the process. You must start building some PowerShell toolmak-
ing muscle memory.

Summary
In this chapter, we emphasized the importance of starting small and testing thoroughly
in PowerShell before diving into scripting. By beginning with single commands in the
essential PowerShell command-line window, you can ensure the correctness of your
commands and reduce the likelihood of bugs in your scripts. We also outlined the
essential units of functionality needed for a tool development project, such as query-
ing system information and logging data to a text file.

 The discovery process of finding the proper commands to run is crucial, and we
encouraged you to become proficient in it. Experimenting at the command line, try-
ing different scenarios, and understanding the output of commands are essential
steps in this process. Additionally, having a test environment, whether through virtual-
ization or cloud-based solutions, provides a safe space for experimentation without
impacting production systems.

 Throughout the chapter, we stressed the iterative nature of script development,
where discovery, testing, and refining commands should continue throughout the
process. By leveraging PowerShell’s immediacy and interactive nature, developers can
build confidence in their scripts and avoid common pitfalls.

 Finally, we had you practice the concepts discussed in the chapter, such as discover-
ing CIM classes and testing commands, to solidify your understanding and build
essential skills in PowerShell toolmaking.

86

Building a basic
function and script module

Remember the tool we made back in chapter 8? Well, go ahead and fire up Visual
Studio Code (VS Code) and open that .ps1 file. In this chapter, we’ll take the tool
you designed in chapter 8 and turn that into a reusable tool for others to use. It’s
important to understand that this chapter isn’t going to attempt to have you build
the entire tool or solve the entire business statement from chapter 8. We’ll take
things one step at a time because it’s the process of toolmaking that we want to
demonstrate for you.

10.1 Starting with a basic function
Basic functions have been a part of PowerShell since day one, and they’re one of
the many types of commands that PowerShell understands (some of the others being
cmdlets, applications, etc.). Functions make a great unit of work for toolmaking as
long as you follow the basic principle of keeping your function tightly scoped and self-
contained. We’ve already written about the need to have tightly scoped functions—
functions that do just one thing. Self-contained means the function needs to live in
its own little world and become a kind of black box. Practically speaking, that
means two things:

 Information inside the function should come only from declared input
parameters. Of course, some functions may look up data from elsewhere,
such as a database or a registry, and that’s fine if it’s what the function does.
But functions shouldn’t rely on external variables or sources other than
intrinsic items such as PSDrives to the filesystem or environmental variables.
You want them to be as self-contained as possible.

8710.1 Starting with a basic function

 Output from a function should be to the PowerShell pipeline only. Stuff like creat-
ing a file on disk, updating a database, and others aren’t output, they are actions. A
function can perform one of those actions if that’s what the function does.

10.1.1 Designing the input parameters

Looking back through the design, what information will the function need? The
usage examples already provide clear guidance about what parameters you’ll have to
create, which is one reason you create usage examples as your primary design deliver-
able. Now, let’s create basic versions of those parameters:

function Get-MachineInfo {
 Param(
 [string[]]$ComputerName,
 [string]$LogFailuresToPath,
 [string]$Protocol = "wsman",
 [switch]$ProtocolFallback
)}

Notice how careful we’re being with the formatting of this code? To conserve space
throughout this book, we’re only indenting the code a little within the function and
within the Param() block, but you’ll typically indent four spaces (which, in most
code editors, is what the Tab key inserts). Don’t get lazy about your code formatting.
Lazy formatting is a sign of the devil and an indication of code that probably has
bugs—and will be hard to debug.

Designing function output
We’re going to harp on this for a moment because it’s one of the first things people
get wrong. PowerShell’s Write-Output command is the shell’s default command.
That is, if you give the shell some expression all by itself, the shell uses Write-Output.
For example, hop into the shell, type 5+5, and press Enter. You see the result on the
screen. Well, in reality, the shell ran something like Write-Output (5+5) and sent
the result to the pipeline (because that’s what Write-Output does); because there
was nothing else in the pipeline, the formatting system took over and created an
onscreen display of whatever was in the pipeline (hopefully, 10).

That means your script should never use Write-Output for anything except your
intended output. And your intended output should always be either nothing, if appro-
priate, or some structured data—objects—that can be passed to another command.

Write-Output should never be used for little status messages that tell you what the
script is doing. It should never output plain, preformatted text (unless that’s the out-
put or result of your command). We’re going to walk through this output design pro-
cess throughout several chapters. Still, for now, keep in mind that output matters
and that PowerShell’s foundational design has certain expectations for the output’s
form and content.

88 CHAPTER 10 Building a basic function and script module

TIP Formatting is important! VS Code will auto-format your PowerShell doc-
ument for you. Just type Format Document into the command palette.

In the Param() block, you declare four parameters. These are simple declarations, and
you’ll build on them in upcoming chapters. For now, here are some things to notice:

 Data types are enclosed in square brackets. Common data types include [string],
[int], and [datetime]. You’ll notice [switch] here, which defines a parameter
containing $True if the command is run with the parameter or $False if not.

 Parameters become variables inside the function, meaning their names are
preceded by a $. And for goodness’ sake, don’t try to create a parameter name
with spaces!

 In the Param() section, a comma separates each parameter from the next. You
don’t have to put them one per line as we’ve done, but when you start building
on these, it’ll be a lot easier to read if they’re broken out one per line.

 The -ComputerName parameter will accept zero or more values in an array,
which is what [string[]] denotes.

 The $Protocol variable will contain “Wsman” unless someone explicitly speci-
fies something else. You’re not limiting a user’s choices to “Wsman” or “Dcom,”
but you eventually will.

10.1.2 Writing the code

Now let’s insert some basic functional code in Listing 10.1. Again, this won’t complete
the tool’s entire mission—you’re just getting started, and we want to walk you through
each step. We also encourage you to pay attention to the process and not necessarily
the result. All of our samples are intended to be educational, not necessarily the abso-
lute best way to accomplish a task.

#You may need to run Enable-PSRemoting or Winrm QC to enable remoting
function Get-MachineInfo {
 Param(
 [string[]]$ComputerName,
 [string]$LogFailuresToPath,
 [string]$Protocol = "Wsman",
 [switch]$ProtocolFallback
)
 foreach ($computer in $computername) {
 # Establish session protocol
 if ($protocol -eq 'Dcom') {
 $option = New-CimSessionOption -Protocol Dcom
 } else {
 $option = New-CimSessionOption -Protocol Wsman
 }
 # Connect session
 $session = New-CimSession -ComputerName $computer -SessionOption $option
 # Query data

Listing 10.1 Basic functional code

Processes each
computer

If construct

8910.1 Starting with a basic function

 $os = Get-CimInstance -ClassName Win32_OperatingSystem -CimSession $session
 # Close session
 $session | Remove-CimSession
 # Output data
 # TODO
 } #foreach
} #function

TIP Notice that we tagged a #function comment on the closing bracket of the
function. That’s a good habit to get into when you have a closing bracket
because it can help remind you which construct the bracket closes. You should
also learn the commands for your scripting editor of choice to find matching
brackets. If your editor supports code folding, that, too, will be helpful. People
run into more than a few bugs due to a missing or misplaced closing bracket.

The If construct will help prevent problems if someone specifies an illegal protocol
for the -Protocol parameter; if they specify “Dcom,” you’ll set up a distributed com-
ponent object model (DCOM) session. Otherwise, you’ll go with a Web Services Man-
agement (WSMan) session if they specify anything else.

 You’re querying only one of the classes that you’ll ultimately need to query; the
point is to start, test, and then add more once everything’s working. This is a conserva-
tive coding approach; although it adds little development time, it will help you pre-
vent complex bugs from creeping into the code. If you test as you go, you’ll probably
have only a couple of lines to debug whenever a bug crops up.

10.1.3 Designing the output

Finally, it would help if you had the command output something, as in the following
listing:

function Get-MachineInfo {
 Param(
 [string[]]$ComputerName,
 [string]$LogFailuresToPath,
 [string]$Protocol = "Wsman",
 [switch]$ProtocolFallback
)
 foreach ($computer in $computername) {
 # Establish session protocol
 if ($protocol -eq 'Dcom') {
 $option = New-CimSessionOption -Protocol Dcom
 } else {
 $option = New-CimSessionOption -Protocol Wsman
 }
 $session = New-CimSession -ComputerName $computer -SessionOption $option
 # Query data
 $os = Get-CimInstance -ClassName Win32_OperatingSystem -CimSession
" $session
 # Close session

Listing 10.2 Adding output

Closes the
function

Connects the
session

Queries for OS data

90 CHAPTER 10 Building a basic function and script module

 $session | Remove-CimSession
 # Output data
 $os | Select-Object -Prop @{n='ComputerName';e={$computer}},
 Version,ServicePackMajorVersion
 } #foreach
} #function

This isn’t an especially complex output—you’re just grabbing the computer name and the
two OS properties you specified in the design. Eventually, this output will become more
complex as you add queries to the mix and incorporate their properties into your output.

NOTE Again, notice that you’re outputting a data structure—an object—to the
pipeline. You haven’t explicitly used Write-Output, but it’s implicitly there
because you didn’t assign the results of that expression to a variable, nor did
you explicitly pipe your object anyplace else. You piped $os to Select-
Object, and the result of that expression will end up in the pipeline.

10.2 Creating a script module
The last step will be to save all of this code as a script module. Modules can be saved in a
variety of places but the best place is in the default directory for modules. You can find
this listed in the PSModulePath environment variable ($env:PSModulePath -split ";").
On Windows PowerShell and later, that path, by default, includes C:\Program Files\
WindowsPowerShell\Modules, and on PowerShell v7 and later, that path, by default,
includes C:\Program Files\PowerShell\7\Modules, so that’s where you’ll create the mod-
ule, under a subfolder called ScriptingMOL. Specifically, save it as ScriptingMOL.psm1.
Notice that the subfolder name and the filename must match for PowerShell to discover the
module and load it on demand automatically.

TIP Actually, when we’re just playing around, we usually save our module to
the path under the Documents folder. That makes it feel personal. We gener-
ally reserve the Program Files location for production modules that are ready
to go. In this case, we want you to get used to that location existing and being
where “real” modules go when you’re finished with them.

We’ve included our module, such as it is at this point, in the code samples for this book
(arranged by chapter and downloadable from http://mng.bz/rjgE). To load the mod-
ule, you must manually run Import-Module and provide the full path to the .psm1 file on
your computer from the extracted zip file. That’s because the code samples include mul-
tiple versions of the module, and you aren’t installing the code samples in one of the
locations where PowerShell automatically looks for modules. Providing the full path to
Import-Module ensures that you’re loading the right version of the module for your pur-
poses. When you’re finished, you should use Remove-Module (or close the console and
open a new one) to ensure you’ve cleaned up before loading a subsequent version of the
same module. You can also use the -Force parameter with Import-Module to forcibly
overwrite existing commands.

Writes the output using
Select-Object

https://shortener.manning.com/rjgE

9110.4 Running the command

TIP Depending on how you download the zip file, its file header may be
flagged, indicating that it came from the internet. Again, depending on how
you unzip it, the individual files may also be flagged. Many PowerShell execu-
tion policies block downloaded files from running. Newer versions of Power-
Shell include an Unblock-File command, which removes that “downloaded”
flag, clearing the script for execution (or for loading as a module).

10.3 Prereq check
Before you test the command, especially if you’re planning to run it yourself and fol-
low along, you need to check a few things:

 Make sure your PowerShell window always says Administrator in the title bar. If
it doesn’t, run the shell with the As Administrator option by right-clicking the
PowerShell Task Bar icon and selecting the option.

 Run Get-ExecutionPolicy; the result should be RemoteSigned, Bypass, or
Unrestricted. If not, use Set-ExecutionPolicy to change the setting to one
of those (we use Bypass, and we’ve covered in chapter 7 why you might pick
one or another).

 Run Get-CimInstance win32_service -computername localhost to ensure
that the Common Information Model (CIM) is set up and working.

If any of these aren’t confirmed on your system, stop. You’ll need to fix them. We’ve
covered the first two; the last item should be a problem only on older versions of Win-
dows (pre-Windows 8), where CIM isn’t enabled by default. You can usually correct
this by installing a more recent version of PowerShell (v3 or later should do it), and
you may need to restart afterward. But rest assured that if you don’t get these three
items working, nothing else in this book will work either.

10.4 Running the command
Now for the actual test. First, close your PowerShell window to ensure that the test is in
a clean PowerShell environment. Then, open a new one (make sure it’s As Adminis-
trator), and run this command:

Get-MachineInfo -ComputerName localhost

No shortcuts
We assume you’ve been following along and creating your module from scratch, not
just testing with our provided sample code. As we explained previously, running Get-
MachineInfo won’t work automatically unless you’ve created a .psm1 file in the cor-
rect magic location that PowerShell looks in. Our code samples will not be in the correct
magic location.

Don’t try to take shortcuts here by running our samples—follow along and write your
code. It’s the best way to learn.

92 CHAPTER 10 Building a basic function and script module

If you get the error message, The client cannot connect to the destination specified
in the request, that means you don’t have remoting enabled. To fix this you can run
the command Winr QuickConfig or Enable-PSRemoting. Then, try again.

 It would be best if you got some output from running the command. You should
be able to type Get-Machi, press Tab, type a space, type –Comp, press Tab, and then
type a space and localhost. If Tab completion isn’t working, double-check your script
for proper filenames, any typos in the code (indicated in VS Code by red squiggly
underlines), and so on. In addition, make sure you’ve used a path that’s in your
machine’s PSModulePath environment variable:

$env:PSModulePath

If the command runs without trouble, then you’re good to go. Take some time to
ensure that you understand why each line of code is in the command and that you can
explain the reason for each step you’ve performed to this point.

 If you make any changes to your module, it’s important to understand that Power-
Shell won’t “see” those changes. That’s because it loaded the module into memory
when you first ran your command; afterward, it runs entirely from memory and
doesn’t reload from disk. So, if you make any changes to your code, you need to do
one of three things:

 Close the PowerShell console window you’ve been testing, and open a new one.
This is a surefire way to ensure you get a fresh start every time.

 Unload your module, and then rerun your command to reload the module.
In this case, that means running Remove-Module ScriptingMOL because
ScriptingMOL is the module name (as defined by the subfolder name and
the .psd1 filename).

 Try manually forcing PowerShell to reimport the module with the command
Import-Module ScriptingMOL -force.

You’ll also notice that we tend to test our commands in a standard PowerShell console
window, even though we’re developing in something like VS Code. That’s because
development environments sometimes have a slightly different way of running scripts,
and the console window represents the standard way your script will run in produc-
tion. The console represents the production environment, so that’s where we test.

10.5 Your turn
Let’s return to the tool we asked you to design in chapter 8. It’s time to start coding
it up.

10.5.1 Start here

To review, you’ve designed the command name as Set-TMServiceLogon. The TM
stands for toolmaking because you don’t have a specific company or organizational
name to use. You’ll design the following use cases:

9310.5 Your turn

Set-TMServiceLogon -ServiceName LOBApp
 -NewPassword "P@ssw0rd"
 -ComputerName SERVER1,SERVER2
 -ErrorLogFilePath failed.txt
 -Verbose

The intent is that -Verbose will generate onscreen warnings about failures, whereas
-ErrorLogFilePath will write failed computer names to a file. Notice that we’ve put
each parameter on its own line to make this specification easier to read. The com-
mand won’t execute exactly like that, but that’s fine—clarity is the idea at this point.

 The following example illustrates that -ErrorLogFilePath and -Verbose are
optional, as is -NewUser; if a new user isn’t specified, you’ll leave that property alone:

Set-TMServiceLogon -ServiceName OurService
 -NewPassword "P@ssw0rd"
 -NewUser "COMPANY\User"
 -ComputerName SERVER1,SERVER2

We also want to show some flexible execution options:

Get-Content servers.txt |
" Set-TMServiceLogon -ServiceName TheService -NewPassword "P@ssw0rd"

This illustrates your ability to accept computer names from the pipeline. Finally, you’ll
demonstrate two more things here:

Import-CSV tochange.csv | Set-TMServiceLogon | ConvertTo-HTML

First, this shows that you can accept an imported CSV file, assuming it has columns named
ServiceName, NewPassword, and ComputerName, and, optionally, NewUser. Second, the
output is also consumable by standard PowerShell commands such as ConvertTo-HTML,
which implies that Format- commands and Export- commands will also work.

10.5.2 Your task

Create a basic function named Set-TMServiceLogon. Specify all the parameters that
are listed in the design, although right now, you might not use all of them. Write
enough code so that given a computer name, service name, and new password, the
function can change the password. If a new username is specified, that should be set
as well. You’ll use both an If and a ForEach construct. Right now, make sure these two
usage examples will work:

Set-TMServiceLogon -ServiceName OurService
 -NewPassword "P@ssw0rd"
 -NewUser "COMPANY\User"
 -ComputerName SERVER1,SERVER2
Set-TMServiceLogon -ServiceName OurService
 -NewPassword "P@ssw0rd"
 -ComputerName SERVER1,SERVER2

94 CHAPTER 10 Building a basic function and script module

Create the function in a script module named MolTools. Test your function against
the Background Intelligent Transfer Service (BITS) on your local host. Remember,
you should have run the necessary commands in the previous lab to discover the cor-
rect syntax. For now, assume that a WSMan (CIM) connection is all you need to imple-
ment. Additionally, for now, don’t worry about logging or other features specified in
the design.

 Keep in mind what you’ve learned from the previous chapter regarding the output
of Invoke-CimMethod. For now, it’s okay to output the computer name and its return
code; you can create that output using Select-Object and custom properties as you
did in the Get-MachineInfo example. Later, you’ll work on getting the output closer
to the design specification.

 Test your command in the PowerShell console rather than in the ISE or VS
Code, and bear in mind the caveats we pointed out about unloading your module
after making changes.

10.5.3 Our take

Here’s our solution for you to compare to your own. Minor variations shouldn’t be
cause for concern, provided your command works when you run it.

function Set-TMServiceLogon {
 Param(
 [string]$ServiceName,
 [string[]]$ComputerName,
 [string]$NewPassword,
 [string]$NewUser,
 [string]$ErrorLogFilePath
)
 ForEach ($computer in $ComputerName) {
 $option = New-CimSessionOption -Protocol Wsman
 $session = New-CimSession -SessionOption $option `
 -ComputerName $Computer
 If ($PSBoundParameters.ContainsKey('NewUser')) {
 $args = @{'StartName'=$NewUser;
 'StartPassword'=$NewPassword}
 } Else {
 $args = @{'StartPassword'=$NewPassword}
 }
 Invoke-CimMethod -ComputerName $computer `
 -MethodName Change `
 -Query "SELECT * FROM Win32_Service WHERE Name =
 " '$ServiceName'" `
 -Arguments $args |
 Select-Object -Property @{n='ComputerName';e={$computer}},
 @{n='Result';e={$_.ReturnValue}}
 $session | Remove-CimSession
 } #foreach
} #function

Listing 10.3 Our solution

Uses
PSBoundParameters

CIM query

Method result piped to
Select-Object

95Summary

Notice that we didn’t include a Verbose parameter. That’s intentional, and you’ll see
why in the next couple of chapters.

 In addition, notice our use of $PSBoundParameters to see whether the NewUser
parameter was specified. This is kind of a trick that we didn’t expect you to know—you
may have done something like If ($NewUser -ne "") or if (-Not $NewUser) to see
whether $NewUser contains anything, and that’s fine. $PSBoundParameters is a hash
table containing all the parameters the command was run with. It’s created automati-
cally. You don’t have to do anything. Using its ContainsKey() method, we can see
whether NewUser is among the parameters used. This is considered a better way to test
whether a parameter is used. But you can see how the If construct is used to build the
CIM arguments hash table, either with just a password or with a password and a new
username. We’re in trouble if someone doesn’t specify a new password, but we’ll deal
with that possibility as we evolve the function.

 In our CIM query (which may get truncated in the book; check the code samples
to see the whole thing), we use PowerShell’s double-quotes trick to insert $Service-
Name into the query. We pipe the result of Invoke-CimMethod—which, in the previous
chapter, you learned returns an object having a ReturnValue property—to Select-
Object so that we can construct our output. We created a manifest for this too:

New-ModuleManifest -Path TMTools.psd1
 -RootModule .\TMTools.psm1
 -FunctionsToExport Set-TMServiceLogon
 -ModuleVersion 1.0.0.0

To this point, we’ve included our solution in the code samples for this book in the corre-
sponding chapter folder (http://mng.bz/rjgE). To load the module, you’ll need to man-
ually run Import-Module and provide the full path to our .psd1 file on your computer. In
the code samples for this chapter, the module name is MoLTools-Prelim to avoid con-
flicting with the “real” MoLTools module that you’re building on your own. Finally, reset
the BITS service after testing your function, as you did in the previous chapter.

Summary
In this chapter, you learned how to transform a PowerShell script into a reusable tool by
building a basic function and script module. Starting with a basic function, you learned
the importance of tightly scoped and self-contained functions, ensuring that they only
rely on declared input parameters and output to the PowerShell pipeline. Designing
input parameters and output data structures was emphasized, along with writing func-
tional code and formatting it properly. You also delved into creating a script module,
saving it in the appropriate directory, and ensuring that PowerShell recognizes and
loads it. The chapter culminated in a hands-on exercise where you created a function
named Set-TMServiceLogon, specifying parameters for changing service logon creden-
tials, and testing it against the Background Intelligent Transfer Service (BITS) on your
local host. Throughout, attention to detail in coding practices and understanding the
PowerShell environment was emphasized to ensure the creation of effective tools.

https://shortener.manning.com/rjgE

96

Getting started with
advanced functions

We’re almost there, we promise, but before we can start writing our own advanced
functions, we’ll focus entirely on the Param() block of the example function in this
chapter and discuss some of the cool things you can do with it.

11.1 About CmdletBinding and common parameters
What’s the difference between a simple function and an advanced function? It may
surprise you to know that it’s just a single line of code—the CmdletBinding() attri-
bute. This attribute adds so much functionality—let’s take a look. To illustrate the
first major difference, let’s start with a basic function:

function test {
 Param(
 [string]$ComputerName
)
}

That’s it—no code at all. Now ask PowerShell for help with that function:

PS C:\> help test
NAME
 test
SYNTAX
 test [[-ComputerName] <string>]
ALIASES
 None

9711.1 About CmdletBinding and common parameters

That’s what we’d expect—PowerShell is producing the best help it can, given the com-
plete nonexistence of anything. Now, let’s make one change to the code:

function test {
 [CmdletBinding()]
 Param(
 [string]$ComputerName
)
}

Again, ask for help:

PS C:\> help test
NAME
 test
SYNTAX
 test [[-ComputerName] <string>] [<CommonParameters>]
ALIASES
 None

Adding the [CmdletBinding()] attribute, PowerShell added the common parameters
to our function. If you read the about_CommonParameters help file, you’ll discover
that all PowerShell commands support this set of parameters. The number has grown
through the subsequent versions of PowerShell, and there are now 11 parameters.
Cmdlet authors don’t need to do anything to make these work—PowerShell takes care
of everything. And because we added [CmdletBinding()], the function will support
all of these common parameters as well. Some of the cooler ones (with availability dif-
fering based on your version of PowerShell) include the following:

 -Verbose—Enables the output of Write-Verbose in your function, overriding
the global $VerbosePreference variable.

 -Debug—Enables the use of Write-Debug in your function.
 -ErrorAction—Modifies your function’s behavior in the event of an error and

overrides the global $ErrorActionPreference variable.
 -ErrorVariable—Lets you specify a variable name in which PowerShell will

capture any errors your function generates.
 -InformationAction—Overrides the global $InformationPreference variable

and enables Write-Information output. This was added in PowerShell v5.
 -InformationVariable—Specifies a variable in which output from Write-

Information will be captured. This, too, was added in PowerShell v5.
 -OutVariable—Specifies a variable in which PowerShell will place copies of

your function’s output while also sending copies into the main pipeline.
 -PipelineVariable—Specifies a variable in which PowerShell will store a copy

of the current pipeline element. We’ll cover this more in a later chapter.

There are others, and we’ll discuss almost all of them in more detail in upcoming chapters.

98 CHAPTER 11 Getting started with advanced functions

11.1.1 Accepting pipeline input

If you remember the original design for the example tool, we specified a need to cap-
ture input from the pipeline. This requires a modification to the parameters and the
code of the function. As a reminder, listing 11.1 shows where you’re starting after the
previous chapter, and listing 11.2 gives the modified function.

function Get-MachineInfo {
 Param(
 [string[]]$ComputerName,
 [string]$LogFailuresToPath,
 [string]$Protocol = "Wsman",
 [switch]$ProtocolFallback
)
 foreach ($computer in $computername) {
 if ($protocol -eq 'Dcom') {
 $option = New-CimSessionOption -Protocol Dcom
 } else {
 $option = New-CimSessionOption -Protocol Wsman
 }
 $session = New-CimSession -ComputerName $computer
 " -SessionOption $option
 #
 $os = Get-CimInstance -ClassName Win32_OperatingSystem
 " -CimSession $session
 $session | Remove-CimSession
 $os | Select-Object -Prop @{n='ComputerName';e={$computer}},
 Version,ServicePackMajorVersion
 } #foreach
} #function

function Get-MachineInfo {
 [CmdletBinding()]
 Param(
 [Parameter(ValueFromPipeline=$True)]
 [string[]]$ComputerName,
 [string]$LogFailuresToPath,
 [string]$Protocol = "Wsman",
 [switch]$ProtocolFallback
)
 BEGIN {}
 PROCESS {
 foreach ($computer in $computername) {
 # Establish session protocol
 if ($protocol -eq 'Dcom') {
 $option = New-CimSessionOption -Protocol Dcom
 } else {
 $option = New-CimSessionOption -Protocol Wsman
 }

Listing 11.1 Original Get-MachineInfo function

Listing 11.2 Modified Get-MachineInfo

Establishes session
protocol

Connects the
session

Queries data

Closes the
session

Outputs the data

Added cmdletbinding

Added a
[Parameter]
decorator

Added script blocks

9911.1 About CmdletBinding and common parameters

 # Connect session
 $session = New-CimSession -ComputerName $computer `
 -SessionOption $option
 # Query data
 $os = Get-CimInstance -ClassName Win32_OperatingSystem `
 -CimSession $session
 # Close session
 $session | Remove-CimSession
 # Output data
 $os | Select-Object -Prop @{n='ComputerName';e={$computer}},
 Version,ServicePackMajorVersion
 } #foreach
} #PROCESS
END {}
} #function

Here’s what we did:

 We added [CmdletBinding()] to the Param() block.
 We added a [Parameter()] decorator, or attribute, to the $ComputerName para-

meter. Although we physically placed it on the preceding line, PowerShell will
read those two lines as one.

 We added BEGIN{}, PROCESS{}, and END{} script blocks.

Understanding how all this fits together requires you to remember that you want the
function to run in two distinct modes and that each mode has slightly different
requirements from PowerShell.

RUNNING COMMANDS IN NON-PIPELINE MODE

Imagine running the command like this:

Get-MachineInfo -ComputerName ONE,TWO,THREE

In this mode, PowerShell will ignore the BEGIN{}, PROCESS{}, and END{} labels, but it
won’t ignore the code within those labels. In other words, it’s like the labels never existed.
$ComputerName will contain an array, or collection, of three [string] objects: ONE,
TWO, and THREE. The entire command will run once, from the first line of code to the
last. The ForEach loop will be executed three times.

RUNNING COMMANDS IN PIPELINE MODE

Now, imagine running the command this way:

"ONE","TWO","THREE" | Get-MachineInfo

First, PowerShell will construct a three-element array because that’s what comma-sepa-
rated lists do in PowerShell. It will then scan ahead in the pipeline and execute the
BEGIN{} block for each command in the pipeline. That’s true for both advanced functions
and compiled cmdlets. The Begin block (which doesn’t have to be all uppercase and can
be omitted if you don’t have any code to stick in) is a good place to do setup tasks, such as
opening database connections, setting up log files, or initializing arrays. Any variables you
create in the Begin block will continue to exist elsewhere in your function.

100 CHAPTER 11 Getting started with advanced functions

 Next, PowerShell will start feeding the elements from that three-element array
down the pipeline, one at a time. So, it will insert "ONE" into $ComputerName and then
run the PROCESS{} block. The ForEach loop will execute, but only once—it’s redun-
dant in this mode, but we need it for the non-pipeline mode. PowerShell will then
feed "TWO" into $ComputerName and run PROCESS{} again. It’ll then put "THREE" into
$ComputerName and run PROCESS{} one last time.

 Finally, after all the objects have been sent through the pipeline, PowerShell will
rescan the pipeline and ask everyone to run their END{} blocks. Again, you can omit
this if you don’t have anything to put in there, but for visual purposes, we like to
include it even if it’s empty. One suggestion is to insert a comment into empty Begin
and End blocks, so you don’t think something is missing:

End {
 Write-Output "All Done"
}

VALUES AND PROPERTYNAMES

Notice that the example uses this decorator:

[Parameter(ValueFromPipeline=$True)]

This enables ByValue binding of pipeline input. You can enable this for only one
parameter per data type. Because $ComputerName is a [string], it’s the only [string]
parameter we can mark as accepting pipeline input ByValue.

 You can also enable input ByPropertyName:

[Parameter(ValueFromPipeline=$True,ValueFromPipelineByPropertyName=$True)]

Now, if the object in the pipeline isn’t a System.String, but it has a ComputerName
property, the $ComputerName variable will pick that up as well.

 If you’re not deeply familiar with pipeline parameter input ByValue and ByProperty-
Name, we urge you to read Learn PowerShell in a Month of Lunches, Fourth Edition (Man-
ning, 2022) and learn all about it. It’s a crucial feature in Windows PowerShell.

11.1.2 Mandatory-ness

Because the function can’t run correctly without a computer name, you want to
ensure that at least one is always provided. Here’s the revised set of parameters:

Param(
 [Parameter(ValueFromPipeline=$True,
 Mandatory=$True)]
 [string[]]$ComputerName,
 [string]$LogFailuresToPath,
 [string]$Protocol = "Wsman",
 [switch]$ProtocolFallback
)

10111.1 About CmdletBinding and common parameters

Here are some notes on our decision-making process:

 Making $ComputerName mandatory makes sense. If a value isn’t provided, Power-
Shell will prompt for it and then fail with an error if one still isn’t given. It’s
important to remember that if you make a parameter mandatory, you can’t also
provide a default value, as we do with the Protocol parameter.

 Making $LogFailuresToPath mandatory doesn’t make sense because you don’t
want to force people to log errors. We’ll check to see if this is provided and
enable logging accordingly.

 Although $Protocol is technically mandatory, we’re providing a default value
of "Wsman", so there’s no need to force people to manually provide a value,
which is what Mandatory=$True would do. We’re happy with someone not spec-
ifying a protocol because we have a useful default value.

 You never make a [switch] parameter mandatory because you’re essentially
forcing it to be $True (or forcing someone to run -ProtocolFallback:$false
to turn it off, which is awkward).

 You can make as many parameters mandatory as you require.

11.1.3 Parameter validation

The $Protocol parameter has a weakness in that it will accept any string whatsoever.
The code is a little protected from incorrect values, due to the way the If construct is
written, but it would be nice to prevent incorrect values altogether. It would also be nice
to provide users with a clue as to what the valid values are. You can do both in one step:

[CmdletBinding()]
Param(
 [Parameter(ValueFromPipeline=$True,
 Mandatory=$True)]
 [string[]]$ComputerName,
 [string]$LogFailuresToPath,
 [ValidateSet('Wsman','Dcom')]
 [string]$Protocol = "Wsman",
 [switch]$ProtocolFallback
)

You add a [ValidateSet()] attribute to the $Protocol parameter. PowerShell will dis-
allow any values not in the list, display valid values in the help it automatically gener-
ates, and even tab-complete those values for users. There are other validation methods
available as well; read about_functions_advanced_parameters for a full list.

11.1.4 Parameter aliases

Finally, although you’ve followed native PowerShell patterns in using -ComputerName
as a parameter name, you might also find value in this addition:

[CmdletBinding()]
Param(

102 CHAPTER 11 Getting started with advanced functions

 [Parameter(ValueFromPipeline=$True,
 Mandatory=$True)]
 [Alias('CN','MachineName','Name')]
 [string[]]$ComputerName,
 [string]$LogFailuresToPath,
 [ValidateSet('Wsman','Dcom')]
 [string]$Protocol = "Wsman",
 [switch]$ProtocolFallback
)

Here, you define three aliases for the parameter, making -CN, -MachineName, and -Name
valid alternatives.

11.1.5 Supporting –Confirm and –WhatIf

There are two more additional pieces of functionality that come with the [Cmdlet-
Binding()] attribute: the -WhatIf and -Confirm parameters. Let’s step out of our
running example for a moment and discuss this often-misunderstood, but deeply valu-
able option. Consider this parameter block:

Function Set-Something {
 [CmdletBinding(SupportsShouldProcess=$True,ConfirmImpact='Low')]
 Param(
)
} #function

Going further
Parameters can get almost infinitely complex, especially as you move into the more
cutting-edge features of newer versions of PowerShell. Although we’ve covered those
in more advanced books (PowerShell in Depth [Manning, 2014], The PowerShell
Scripting & Toolmaking Book [independently published, 2022]), we don’t cover them
here because they’re outside the realm of “getting started with toolmaking” that this
book focuses on. That said, we do want you to be aware of the possibilities!

One thing you can do is define multiple parameter sets. Parameter sets often share
certain parameters that are common to all of them, while reserving other parameters
for mutually exclusive sets. Your CmdletBinding attribute can even define which set
is the default.

Another topic—and one that could almost be its own book—is dynamic parameters.
These parameters magically come into existence—or go out of existence—based on
the exact situation in which the command finds itself. You might expose certain param-
eters when a command is in a local disk drive but hide them when it’s in a network
drive. The possibilities are nearly limitless, making these things tricky to work with.

PowerShell’s parameters provide a ton of depth to support a wide range of sophisti-
cated scenarios. You’ll be ready to explore even further when you’ve mastered the
basics we’ve covered here.

10311.1 About CmdletBinding and common parameters

The CmdletBinding attribute has gotten a bit more complex. It has declared that it
supports ShouldProcess, a PowerShell feature enabling the function’s –WhatIf and
–Confirm parameters. This is appropriate for functions that plan to make some
change to the system. If someone runs our command with –WhatIf, and we’ve taken
the proper steps, then the command won’t do anything—it will just show what it
would have done had we let it. Or, if someone runs the command with –Confirm, and
we’ve again taken the proper steps in the code, then PowerShell will ask the user to
confirm each operation, essentially asking them, “Are you sure?”

 It’s worth noting that the –WhatIf and –Confirm switches are inherited by com-
mands inside our function. That is, we don’t have to do anything if all we’re doing is
running some other command that itself supports –WhatIf and –Confirm. Running
our function with one or both parameters will pass them to the commands inside. But
suppose we want to run some command that doesn’t support –WhatIf and –Confirm—
maybe a raw .NET Framework class that might blow up the system:

Function Invoke-InfoTechExplosion {
 [CmdletBinding(SupportsShouldProcess=$True,ConfirmImpact='Low')]
 Param(
 [Parameter(Mandatory=$True)]
 [string[]]$DomainNameToCrash
)
 ForEach ($Domain in $DomainNameToCrash) {
 If ($PSCmdlet.ShouldProcess($Domain)) {
 [System.Directory]::GetDomain($Domain).Destroy()
 }
 }
} #function

This example is fun, but you hopefully get the idea. When we call $PSCmdlet
.ShouldProcess() and pass a description of what we’re about to target, here’s what
PowerShell does:

 If the command wasn’t run with either –WhatIf or –Confirm, then the method
returns True, and whatever we’ve put inside the If construct runs.

 If the command was run with –WhatIf, a message is displayed, the method
returns False, and our dangerous code never runs.

 If the command was run with –Confirm, a prompt is produced, and the method
returns True or False based on the response to that prompt, determining
whether our dangerous code runs.

The ConfirmImpact setting plays into the built-in $ConfirmPreference variable in the
shell, which defaults to "High". We can specify "Low", "Medium", or "High". Here’s the
deal: if the specified ConfirmImpact setting is equal to or greater than the content of
$ConfirmPreference, then the –Confirm parameter is automatically used, even if we
don’t explicitly type it.

 As a best practice, you should support the ShouldProcess feature in any command
that might modify the system. Typically, commands with a Get verb wouldn’t do that,

104 CHAPTER 11 Getting started with advanced functions

but commands like Set, Invoke, Remove, Add, and so on might—and should support
this feature set. If you provide comment-based help with your command (which we’ll
discuss briefly), you don’t need to document –WhatIf and –Confirm; they’ll be auto-
matically documented for you.

 As a secondary best practice, don’t declare support for ShouldProcess unless you
implement that support. As we’ve noted, sometimes you don’t need to do anything
other than let –WhatIf or –Confirm fall through to the commands you’re already run-
ning. But test that—nothing is more dangerous than someone running your command
with –WhatIf, only to discover that you coded it wrong, and whatever dangerous thing
your command did actually happened! Whoops.

11.2 Your turn
Okay, let’s return to the command you built in the previous chapter and start making
some improvements.

11.2.1 Start here

Here’s where we finished up after the previous chapter. You can use this as a starting
point for your lab result.

function Set-TMServiceLogon {
 Param(
 [string]$ServiceName,
 [string[]]$ComputerName,
 [string]$NewPassword,
 [string]$NewUser,
 [string]$ErrorLogFilePath
)
 ForEach ($computer in $ComputerName) {
 $option = New-CimSessionOption -Protocol Wsman
 $session = New-CimSession -SessionOption $option `
 -ComputerName $Computer
 If ($PSBoundParameters.ContainsKey('NewUser')) {
 $args = @{'StartName'=$NewUser;
 'StartPassword'=$NewPassword}
 } Else {
 $args = @{'StartPassword'=$NewPassword}
 }
 Invoke-CimMethod -ComputerName $computer `
 -MethodName Change `
 -Query "SELECT * FROM Win32_Service WHERE Name =
 " '$ServiceName'" `
 -Arguments $args |
 Select-Object -Property @{n='ComputerName';e={$computer}},
 @{n='Result';e={$_.ReturnValue}}
 $session | Remove-CimSession
 } #foreach
} #function

Listing 11.3 Set-TMServiceLogon

10511.2 Your turn

11.2.2 Your task

Go ahead and make this an advanced function and accomplish the following:

 Ensure that ServiceName, ComputerName, and NewPassword are mandatory.
Don’t make NewUser mandatory.

 Ensure that ComputerName can accept pipeline input ByValue.
 Ensure that ServiceName, ComputerName, NewPassword, and NewUser can accept

pipeline input ByPropertyName.

11.2.3 Our take

Listing 11.4 shows what we came up with. Notice especially the PROCESS{} label addi-
tion in the body of the code.

NOTE We didn’t implement ShouldProcess here, although we probably
should because this command is modifying the system. Notice that our
change is being made by using Invoke-CimMethod. Does it support Should-
Process? That is, does it support –WhatIf and –Confirm? If so, how must we
pass that through from our command? Give it a try as a bonus exercise, and
see if you can figure it out!

function Set-TMServiceLogon {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string]$ServiceName,
 [Parameter(Mandatory=$True,
 ValueFromPipelineByPropertyName=$True,
 ValueFromPipeline=$True)]
 [string[]]$ComputerName,
 [Parameter(Mandatory=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string]$NewPassword,
 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewUser,
 [string]$ErrorLogFilePath
)
BEGIN{}
PROCESS{
 ForEach ($computer in $ComputerName) {
 $option = New-CimSessionOption -Protocol Wsman
 $session = New-CimSession -SessionOption $option `
 -ComputerName $Computer
 If ($PSBoundParameters.ContainsKey('NewUser')) {
 $args = @{'StartName'=$NewUser
 'StartPassword'=$NewPassword}
 } Else {
 $args = @{'StartPassword'=$NewPassword}
 }

Listing 11.4 Modified Set-TMServiceLogon

106 CHAPTER 11 Getting started with advanced functions

 Invoke-CimMethod -ComputerName $computer `
 -MethodName Change `
 -Query "SELECT * FROM Win32_Service WHERE Name =
 " '$ServiceName'" `
 -Arguments $args |
 Select-Object -Property @{n='ComputerName';e={$computer}},
 @{n='Result';e={$_.ReturnValue}}
 $session | Remove-CimSession
 } #foreach
} #PROCESS
END{}
} #function

To this point, we’ve included our solution in the code samples for this book at
http://mng.bz/rjgE.

 Finally, reset the Background Intelligent Transfer Service (BITS), as you did in the
previous chapter, after testing your function. You don’t want BITS messed up!

Get-Service Bits | Start-service
Get-Service Bits | Set-Service -StartupType Automatic

Summary
This chapter delved into the intricacies of advanced PowerShell functions, focusing
on understanding and utilizing the CmdletBinding() attribute. By adding this attri-
bute to a function, common parameters such as -Verbose, -Debug, -ErrorAction, and
others are automatically enabled, enhancing the functionality and usability of the func-
tion. The chapter explored various aspects of advanced functions, including accepting
pipeline input, setting parameters as mandatory, parameter validation, parameter aliases,
and supporting -Confirm and -WhatIf parameters. You also learned how to elevate
your PowerShell scripting skills through examples and explanations by creating more
versatile and powerful functions. Additionally, we encouraged further exploration of
dynamic parameters and parameter sets for more advanced scripting scenarios, pro-
viding resources for continued learning and improvement.

http://mng.bz/rjgE
https://shortener.manning.com/rjgE

107

Objects:
The best kind of output

Remember back in chapter 8 when we created our initial design for Get-
MachineInfo? So far, we’re querying for some information but not for everything
we want it to do. That was a deliberate decision we made so that you could get some
structure around the tool first. We’ve also held off because once you start querying
a bunch of information, you need to take a specific approach to combine it, and we
wanted to tackle that approach in a single chapter.

 Right now, the “functional” part of the tool looks like this:

Query data
$Session = New-CIMSession -ComputerName SRV1
$os = Get-CimInstance -ClassName Win32_OperatingSystem `
 -CimSession $session
Close session
$session | Remove-CimSession
Output data
$os | Select-Object -Prop @{n='ComputerName';e={$computer}},
 Version,ServicePackMajorVersion

We’re using Select-Object to produce the pieces of output we want. Some might
call this the lazy way, but we’re just reducing the information we gathered, which
someone could have done entirely alone. Let’s go back to the list of the informa-
tion we originally wanted and add where we’ll get the information from:

 Computer hostname (you have this from the parameter).
 Manufacturer (Win32_ComputerSystem).
 Model (Win32_ComputerSystem).

108 CHAPTER 12 Objects: The best kind of output

 OS version and build number (Win32_OperatingSystem; Version and Build-
Number).

 Service pack version, if any (Win32_OperatingSystem; ServicePackMajor-
Version).

 Installed RAM (Win32_ComputerSystem; TotalPhysicalMemory is in bytes).
 Processor type (Win32_Processor; AddressWidth is either 32 or 64).
 Processor socket count (Win32_ComputerSystem; NumberOfProcessors).
 Total core count (Win32_ComputerSystem; NumberOfLogicalProcessors).
 Free space on the system drive (usually C:, but not always). This one’s harder.

Win32_OperatingSystem has a SystemDrive property that’s something like “C:”;
you’d need to query Win32_LogicalDisk, where the DeviceId property
matches, and then look at its FreeSpace, which is in bytes.

Now let’s start assembling that information.

12.1 Assembling the information
We’ll avoid using backticks in some places to keep the code’s column width under
the 80-character count that fits well in this book. Instead, we’ll start using a tech-
nique called splatting. With this technique, you construct a hash table whose keys
are parameter names and whose values are the corresponding parameter values.
You can call the hash table variable anything you’d like. We tend to use a meaning-
ful name, for example:

$params = @{'ClassName'='Win32_OperatingSystem'
 'ComputerName'='CLIENT1'}

Put each parameter on a new line. For switch parameters, assign a value of $True:

$params = @{'ClassName'='Win32_OperatingSystem'
 'ComputerName'='CLIENT1'
 'Verbose' = $True}

You then feed those values to the command by prefixing the variable name with @
instead of $:

Get-CimInstance @params

There, now you can tell your family you splatted today!
 So, here’s the revised chunk of code that queries the information you need

into variables:

Query data
$os_params = @{'ClassName'='Win32_OperatingSystem'
 'CimSession'=$session}
$os = Get-CimInstance @os_params
$cs_params = @{'ClassName'='Win32_ComputerSystem'
 'CimSession'=$session}

10912.2 Constructing and emitting output

$cs = Get-CimInstance @cs_params
$sysdrive = $os.SystemDrive
$drive_params = @{'ClassName'='Win32_LogicalDisk'
 'Filter'="DeviceId='$sysdrive'"
 'CimSession'=$session}
$drive = Get-CimInstance @drive_params
$proc_params = @{'ClassName'='Win32_Processor'
 'CimSession'=$session}
$proc = Get-CimInstance @proc_params |
 Select-Object -first 1

Here’s a couple of notes to consider:

 Notice where you’re getting the system drive letter into $sysdrive and then
using $sysdrive as part of a filter in Get-CimInstance. This will ensure that
$drive contains only one object.

 Notice that you’re using Select-Object to ensure that $proc contains only one
object. The processors in a computer can’t have a different AddressWidth, so
limiting the query to one result will make that result a bit easier to work with as
you assemble information.

12.2 Constructing and emitting output
What you want to avoid doing at this point is output text. It would be best never to use
Write-Host for tool output because that output is sent to the information stream
and spit out to the console. You couldn’t reuse, redirect, or re-anything that output,
which is the opposite of the point of a reusable tool. Instead, your tools should
always output structured data in the form of objects, the way PowerShell commands
were designed to do:

Output data
$props = @{'ComputerName'=$computer
 'OSVersion'=$os.version
 'SPVersion'=$os.servicepackmajorversion
 'OSBuild'=$os.buildnumber
 'Manufacturer'=$cs.manufacturer
 'Model'=$cs.model
 'Procs'=$cs.numberofprocessors
 'Cores'=$cs.numberoflogicalprocessors
 'RAM'=($cs.totalphysicalmemory / 1GB)
 'Arch'=$proc.addresswidth
 'SysDriveFreeSpace'=$drive.freespace}
$obj = New-Object -TypeName PSObject -Property $props
Write-Output $obj

Again, here are some notes for you to consider:

 You’re constructing a hash table in the $props variable, unlike when splatting,
that holds your output. Each key in the hash table is a property name you want
to output, and each value is the corresponding data for that property.

Gets just the
SystemDrive value

Selects the first
processor

110 CHAPTER 12 Objects: The best kind of output

 We’ve used shorter property names for the output than usual, mainly to help
the code fit into this book. For example, we’d generally use Architecture
instead of Arch because it’s more straightforward. The hash table key will even-
tually become the property name. It would be best if you didn’t try to use names
with spaces, and names with underscores (_) look amateurish.

 You use New-Object to construct a blank object and attach your properties and
values from the hash table.

 You don’t need to save the object in $obj, but we tend to do that because you’ll
modify the object later, so having it in a variable is useful.

 You output the object immediately to the pipeline, using Write-Output, rather
than accumulating it in an array or something to output later. The whole point
of the pipeline is to accumulate objects for you and pass them on to whatever’s
next in the pipeline.

12.3 A quick test
After importing the module and running the command, we got the following output:

OSVersion : 10.0.22621
SPVersion : 0
SysDriveFreeSpace : 16500285440
Procs : 1
Manufacturer : HyperV
Cores : 12
ComputerName :
RAM : 31.5475044250488
OSBuild : 22621
Model : 20MDCTO1WW
Arch : 64

Notice that these properties aren’t in the right order! That’s because we used a normal hash
table to construct the property list, and .NET memory optimizes that storage, which
can result in reordering. That’s fine. At this tool level, you shouldn’t be worried about
what the output looks like—you could always use a Format command or Select-
Object to specify an order. It is possible to construct an [ordered] hash table instead,
but we rarely do so. Worrying about the raw output of a script is counterproductive
and counter to native PowerShell patterns. Swallow your OCD, and let the output fall
where it may!

NOTE We deliberately left SysDriveFreeSpace in bytes because it will be use-
ful for showing you another trick later.

Here’s the code.

function Get-MachineInfo {
 [CmdletBinding()]

Listing 12.1 Get-MachineInfo

11112.3 A quick test

 Param(
 [Parameter(ValueFromPipeline=$True,
 Mandatory=$True)]
 [Alias('CN','MachineName','Name')]
 [string[]]$ComputerName,
 [string]$LogFailuresToPath,
 [ValidateSet('Wsman','Dcom')]
 [string]$Protocol = "Wsman",
 [switch]$ProtocolFallback
)
 BEGIN {}
 PROCESS {
 foreach ($computer in $computername) {
 # Establish session protocol
 if ($protocol -eq 'Dcom') {
 $option = New-CimSessionOption -Protocol Dcom
 } else {
 $option = New-CimSessionOption -Protocol Wsman
 }
 # Connect session
 $session = New-CimSession -ComputerName $computer `
 -SessionOption $option
 # Query data
 $os_params = @{'ClassName'='Win32_OperatingSystem'
 'CimSession'=$session}
 $os = Get-CimInstance @os_params
 $cs_params = @{'ClassName'='Win32_ComputerSystem'
 'CimSession'=$session}
 $cs = Get-CimInstance @cs_params
 $sysdrive = $os.SystemDrive
 $drive_params = @{'ClassName'='Win32_LogicalDisk'
 'Filter'="DeviceId='$sysdrive'"
 'CimSession'=$session}
 $drive = Get-CimInstance @drive_params
 $proc_params = @{'ClassName'='Win32_Processor'
 'CimSession'=$session}
 $proc = Get-CimInstance @proc_params |
 Select-Object -first 1
 # Close session
 $session | Remove-CimSession
 # Output data
 $props = @{'ComputerName'=$computer
 'OSVersion'=$os.version
 'SPVersion'=$os.servicepackmajorversion
 'OSBuild'=$os.buildnumber
 'Manufacturer'=$cs.manufacturer
 'Model'=$cs.model
 'Procs'=$cs.numberofprocessors
 'Cores'=$cs.numberoflogicalprocessors
 'RAM'=($cs.totalphysicalmemory / 1GB)
 'Arch'=$proc.addresswidth
 'SysDriveFreeSpace'=$drive.freespace}
 $obj = New-Object -TypeName PSObject -Property $props
 Write-Output $obj
 } #foreach

112 CHAPTER 12 Objects: The best kind of output

} #PROCESS
END {}
} #function

12.4 An object alternative
By this point in the book, we hope you’ve gotten the memo that PowerShell is all
about the objects. Using New-Object, as we’ve demonstrated, is useful. But as an alter-
native, you can also use a type accelerator, [pscustomobject]. You can use this in
front of a hash table definition, and PowerShell will create a custom object, just as if
you’d used New-Object:

[pscustomobject]@{
Name = 'James'
Department = 'IT'
ComputerName = 'Laptop-QTP097'
Expires = (Get-Date).AddDays(90)
}

This will create an object as follows:

Name Department ComputerName Expires
---- ---------- ------------ -------
James IT Laptop-QTP097 3/30/2023 1:23:33 PM

We find it handy to use [pscustomobject] in the console when testing pipeline bind-
ing because we can create a simple object on the fly:

[pscustomobject]@{Name='bits';computername='Laptop-256'} | get-service

As a bonus, the type accelerator will use the hash table as an ordered hash table.
This means your property names will be displayed in the order you list them. As we
said earlier, this is something you shouldn’t worry too much about, but sometimes it
comes in handy.

 Now, the question we hope you’re asking is, “Which technique do I use?” Using a
cmdlet like New-Object is probably preferred because if someone new to PowerShell
is looking at your code, they can get help for New-Object. Because you’re using full
parameter names, the syntax is more intuitive. Using [pscustomobject] can make
your code a little more cryptic, but if you insert a comment explaining what you’re
doing, there’s probably nothing wrong with using it.

12.5 Enriching objects
In the running example, you’re using custom objects to combine information from
other objects you’ve obtained. That’s not the only use case in which you’ll find your-
self, though, so we wanted to briefly step out of the running example and explore a
different scenario.

11312.5 Enriching objects

 Suppose that you’re writing a command to retrieve computer accounts from Active
Directory that match the provided filter criteria. Your goal is to produce all the origi-
nal information that Active Directory has for each computer account. Still, you also
want to return the Windows build number that each computer is running—at least for
those online computers that you have permission to query.

 You could follow the same model we’ve followed thus far and create a brand-new
object containing the combined information. But those Active Directory computer
objects have a lot of properties, which would require a lot of code to copy over. And all
you want to do is add one teeny little property. Can’t you add it to the existing com-
puter object? Yup. Check out the following listing.

function Add-ADComputerWindowsBuild {
 [CmdletBinding()]
 Param(
 [Parameter(ValueFromPipeline=$True)]
 [object[]]$InputObject
)
 PROCESS {
 ForEach ($comp in $inputobject) {
 $os = Get-CimInstance -ComputerName $comp.name `
 -Class Win32_OperatingSystem
 $comp | Add-Member -MemberType NoteProperty `
 -Name OSBuild `
 -Value $os.BuildNumber
 } #foreach
 } #process
} #function

This is pretty bare-bones—we haven’t dealt with a situation where a computer isn’t
online, for example. The key functionality here is the Add-Member cmdlet. When you
pipe an object to this cmdlet, it lets you add a property. In this case, we’re adding a
Note-Property, which is a static value. We’ve named the new property OSBuild and
populated it with the operating system build number we just queried from the Com-
mon Information Model (CIM). Add-Member automatically modifies the object and
then passes it through the pipeline. Because we didn’t “capture” that output, it becomes
the function’s output. We would run this like so:

Get-ADComputer –filter * | Add-ADComputerWindowsBuild

We’re still using the core Get-ADComputer command to do what it does best; we’re just
piping that to a second command that enriches the objects by adding new informa-
tion to them. Again, this isn’t much different from producing a new object and copy-
ing whatever we want to it, but in this case, adding one thing is a lot easier than
copying dozens or hundreds of things. This add-a-member technique can also be faster
because you don’t have to produce a new object and copy a bunch of data.

Listing 12.2 Add-ADComputerWindowsBuild function

114 CHAPTER 12 Objects: The best kind of output

 We’ll point out, however, that from a purist software development perspective,
what we’ve done is probably horrifying. Objects (well, more properly, classes, which
define what a class looks like) are meant to be contracts. They’re fixed, unchanging,
and reliable. By tacking stuff on as we’ve done, we’ve—well, maybe not broken the con-
tract, but indeed scribbled with a crayon in the margins. But it’s okay—PowerShell’s
Extensible Type System (ETS, the thing that makes Add-Member work) was designed for
this purpose. PowerShell enriches objects of all kinds daily, and you’ve probably never
even noticed. So, use this technique when it helps you solve your problems!

12.6 Your turn
As with the previous chapters, let’s focus on the service-changing tool. You may be
thinking that tool doesn’t produce any output, but you’d be wrong. If you revisit the
original design, you want it to produce output for each computer, success or failure. Right
now, you’re probably just producing a minimal set of output using Select-Object:

Select-Object -Property @{n='ComputerName';e={$computer}},
@{n='Result';e={$_.ReturnValue}}

But that’s about to change!

12.6.1 Start here

Here’s where we left off with our version of this function. Use this, or your own work
from the previous chapter, as a starting point.

function Set-TMServiceLogon {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string]$ServiceName,
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string[]]$ComputerName,
 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewPassword,
 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewUser,
 [string]$ErrorLogFilePath
)
BEGIN{}
PROCESS{
 ForEach ($computer in $ComputerName) {
 $option = New-CimSessionOption -Protocol Wsman
 $session = New-CimSession -SessionOption $option `
 -ComputerName $Computer
 If ($PSBoundParameters.ContainsKey('NewUser')) {

Listing 12.3 Set-TMServiceLogon

11512.6 Your turn

 $args = @{'StartName'=$NewUser
 'StartPassword'=$NewPassword}
 } Else {
 $args = @{'StartPassword'=$NewPassword}
 }
 Invoke-CimMethod -ComputerName $computer `
 -MethodName Change `
 -Query "SELECT * FROM Win32_Service WHERE Name =
 " ?'$ServiceName'" `
 -Arguments $args |
 Select-Object -Property @{n='ComputerName';e={$computer}},
 @{n='Result';e={$_.ReturnValue}}
 $session | Remove-CimSession
 } #foreach
} #PROCESS
END{}
} #function

12.6.2 Your task

Modify your function to output an object for each computer it operates against. The
output should include the computer name and status. Revisit the status codes at
http://mng.bz/c05L, and make it so that 0 displays “Success” in your output, 22 dis-
plays “Invalid Account,” and anything else displays “Failed: XX,” where XX is the
numeric return value. As a challenge, try not to add more If constructs to your code—
look into the Switch construct instead. It would be best if you also looked for places to
use splatting.

12.6.3 Our take

Here’s our version (remember, you can get the code file in the downloadable samples).

function Set-TMServiceLogon {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string]$ServiceName,
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string[]]$ComputerName,
 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewPassword,
 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewUser,
 [string]$ErrorLogFilePath
)
BEGIN{}
PROCESS{
 ForEach ($computer in $ComputerName) {

Listing 12.4 Our version of Set-TMServiceLogon

http://mng.bz/c05L

116 CHAPTER 12 Objects: The best kind of output

 $option = New-CimSessionOption -Protocol Wsman
 $session = New-CimSession -SessionOption $option `
 -ComputerName $Computer
 If ($PSBoundParameters.ContainsKey('NewUser')) {
 $args = @{'StartName'=$NewUser
 'StartPassword'=$NewPassword}
 } Else {
 $args = @{'StartPassword'=$NewPassword}
 }
 $params = @{'CimSession'=$session
 'MethodName'='Change'
 'Query'="SELECT * FROM Win32_Service
 " WHERE Name = '$ServiceName'"
 'Arguments'=$args}
 $ret = Invoke-CimMethod @params
 switch ($ret.ReturnValue) {
 0 { $status = "Success" }
 22 { $status = "Invalid Account" }
 Default { $status = "Failed: $($ret.ReturnValue)" }
 }
 $props = @{'ComputerName'=$computer
 'Status'=$status}
 $obj = New-Object -TypeName PSObject -Property $props
 Write-Output $obj
 $session | Remove-CimSession
 } #foreach
} #PROCESS
END{}
} #function

Hopefully, you noticed a few things:

 We changed to using the CIM session instead of a computer name. Bet you were
wondering about that, right? Well, we hope you were. Why did we do it? To see
if you were paying attention.

 We switched to splatting in line 29, and used the $params hash table in line 34.
Notice how much more intuitive this is when compared to listing 12.3, line 29.

 Notice our use of the switch construct to construct the status message. You can
also see that we used the + symbol when defining the query. We only did this to
format the code to fit properly on the page. Normally, you would write out the
query as a single line: "SELECT * FROM Win32_Service WHERE Name = '$Service-
Name'", and that’s what you’ll see in the code download.

Accumulating a lot of results will make your command block the pipeline; outputting
objects one at a time allows the pipeline to run multiple commands in parallel.

Summary
In this chapter, we delved deeper into constructing and emitting structured output in
PowerShell, emphasizing the importance of producing objects rather than text out-
put. We revisited our Get-MachineInfo tool, refining it to assemble comprehensive

117Summary

information about a system’s hardware and software. Using techniques like splatting
and New-Object, we created custom objects with properties representing various sys-
tem attributes. Additionally, we explored alternative methods for creating objects, such
as using [pscustomobject]. We then discussed enriching objects by adding properties
dynamically, demonstrating how to incorporate additional information, such as the
Windows build number, to existing objects. Finally, we applied these concepts to
enhance the Set-TMServiceLogon function, modifying it to output structured data for
each computer processed, utilizing the switch construct for status determination and
splatting for parameter handling. By focusing on producing structured output in the
form of objects, our PowerShell tools become more versatile, reusable, and conducive
to pipeline processing.

118

Using all the streams

You may need to flip back a few chapters and refamiliarize yourself with the
[CmdletBinding()] keyword. We can add this to a Param() block, which turns our
function into an advanced function that enables the commands for verbose, warn-
ing, informational, and other output. Well, it’s time to put that to use and demon-
strate why you’d want to use them.

13.1 Knowing the seven output streams
It’s helpful to understand that PowerShell has seven output streams rather than the
one we normally think of. First up, and the one you’re most familiar with, is the Suc-
cess stream, which you’re used to thinking of as “the end of the pipeline.” This gets
some special treatment from the PowerShell engine. For example, it’s the pipeline
used to pass objects from command to command. Additionally, at the end of the
pipeline, PowerShell sort of invisibly adds the Out-Default cmdlet, which runs any
objects in the pipeline through PowerShell’s formatting system. Whatever hosting
application you’re using—the PowerShell console, Visual Studio Code (VS Code),
and so on—is responsible for dealing with that output by placing it onto the screen
or doing something else.

 There are seven streams in all:

1 Success, which we just discussed
2 Error
3 Warning
4 Verbose
5 Debug

11913.2 Adding verbose and warning output

6 Information
7 Progress

Those numbers correspond with how PowerShell references each pipeline for redirec-
tion purposes.

 Each pipeline represents a discrete, independent way of passing information. Each
hosting application decides how to deal with each pipeline. For example, the console
host displays items from pipeline 4 (Verbose) in yellow text, prefixed by “VERBOSE:”.
Other hosts might log that output to an event log or ignore it.

 Additionally, the shell defines several preference variables that control each pipe-
line’s output. $VerbosePreference controls pipeline 4, $WarningPreference controls 3,
and so on. Setting a preference to SilentlyContinue will suppress that pipeline’s out-
put; setting it to Continue will display the output in whatever way the host application
defines. The common parameters override the preference variables on a per-command
basis. For example, adding -Verbose to your command when you run it will enable
Write-Verbose output in the command.

13.2 Adding verbose and warning output
Verbose output is disabled by default, but warning output is enabled. With that in
mind, we do the following with those two output forms.

function Get-MachineInfo {
 [CmdletBinding()]
 Param(
 [Parameter(ValueFromPipeline=$True,
 Mandatory=$True)]
 [Alias('CN','MachineName','Name')]
 [string[]]$ComputerName,
 [string]$LogFailuresToPath,
 [ValidateSet('Wsman','Dcom')]
 [string]$Protocol = "Wsman",
 [switch]$ProtocolFallback
)
 BEGIN {}
 PROCESS {
 foreach ($computer in $ComputerName) {
 if ($protocol -eq 'Dcom') {
 $option = New-CimSessionOption -Protocol Dcom
 } else {
 $option = New-CimSessionOption -Protocol Wsman
 }
 Write-Verbose "Connecting to $computer over $protocol"
 $session = New-CimSession -ComputerName $computer `
 -SessionOption $option
 Write-Verbose "Querying from $computer"
 $os_params = @{'ClassName'='Win32_OperatingSystem'
 'CimSession'=$session}
 $os = Get-CimInstance @os_params

Listing 13.1 Adding output

[CmdletBinding()] is
added just prior to
the param block.

Uses verbose
messages

120 CHAPTER 13 Using all the streams

 $cs_params = @{'ClassName'='Win32_ComputerSystem'
 'CimSession'=$session}
 $cs = Get-CimInstance @cs_params
 $sysdrive = $os.SystemDrive
 $drive_params = @{'ClassName'='Win32_LogicalDisk'
 'Filter'="DeviceId='$sysdrive'"
 'CimSession'=$session}
 $drive = Get-CimInstance @drive_params
 $proc_params = @{'ClassName'='Win32_Processor'
 'CimSession'=$session}
 $proc = Get-CimInstance @proc_params |
 Select-Object -first 1
 Write-Verbose "Closing session to $computer"
 $session | Remove-CimSession
 Write-Verbose "Outputting for $computer"
 $obj = [pscustomobject]@{'ComputerName'=$computer
 'OSVersion'=$os.version
 'SPVersion'=$os.servicepackmajorversion
 'OSBuild'=$os.buildnumber
 'Manufacturer'=$cs.manufacturer
 'Model'=$cs.model
 'Procs'=$cs.numberofprocessors
 'Cores'=$cs.numberoflogicalprocessors
 'RAM'=($cs.totalphysicalmemory / 1GB)
 'Arch'=$proc.addresswidth
 'SysDriveFreeSpace'=$drive.freespace}
 Write-Output $obj
 } #foreach
} #PROCESS
END {}
} #function

Sharp-eyed readers will notice two things:

 We sneaked in a change to the New-Object creation. This is mainly to show you
a new technique that you may run across. Rather than defining a hash table of
properties and passing it to New-Object, we used the [pscustomobject] type
accelerator to do the same job in a bit less space. We touched on this type of
accelerator in the previous chapter.

 We’ve replaced a lot of our inline comments with verbose output. This lets the
same message be seen by someone running the code, provided they add -Verbose
when doing so. If the command is run without –Verbose, the Write-Verbose
lines will still be run, but you won’t see the output.

You haven’t added any warning output yet because you haven’t needed it. But you will,
eventually—so keep Write-Warning in the back of your brain. Eventually, you’ll add
statements like this:

write-warning "Danger, Danger!"

Uses
[pscustomobject]

12113.3 Doing more with -Verbose

13.3 Doing more with -Verbose
If you take a moment to think about it, you’ll realize that incorporating Write-Verbose
statements into your tools makes a lot of sense. We recommend that you include the
statements from the beginning. Please don’t wait to add them until after you’ve fin-
ished scripting. Add them first! Insert verbose messages throughout your script high-
lighting what action your command is performing or the values of key variables. This
will help you troubleshoot and debug during the development process because you
can run your command with -Verbose. The verbose messages can also double as inter-
nal documentation. Finally, if someone is trying to run your tool and is encountering
problems, you can have them start a transcript, run the command with -Verbose, and
then close the transcript and send it to you. If you’ve written good verbose messages,
you can track what’s happening and, hopefully, identify the problem.

 Consider adding verbose messages like this at the beginning of your command:

Write-Verbose "Execution Metadata:"
Write-Verbose "User = $($env:userdomain)\$($env:USERNAME)"
$id = [System.Security.Principal.WindowsIdentity]::GetCurrent()
$IsAdmin = [System.Security.Principal.WindowsPrincipal]::new($id).IsInRole(
 'administrators')
Write-Verbose "Is Admin = $IsAdmin"
Write-Verbose "ComputerName = $env:COMPUTERNAME"
Write-Verbose "OS = $((Get-CimInstance Win32_Operatingsystem).Caption)"
Write-Verbose "Host = $($host.Name)"
Write-Verbose "PSVersion = $($PSVersionTable.PSVersion)"
Write-Verbose "Runtime = $(Get-Date)"

When this is executed, you’ll get potentially useful information:

VERBOSE: Execution Metadata:
VERBOSE: User = Win10Laptop\James
VERBOSE: Is Admin = False
VERBOSE: ComputerName = Win10Laptop
VERBOSE: Perform operation 'Enumerate CimInstances' with following
parameters, ''namespaceName' = root\cimv2,'className' =
Win32_Operatingsystem'.
VERBOSE: Operation 'Enumerate CimInstances' complete.
VERBOSE: OS = Microsoft Windows 10.0 Professional
VERBOSE: Host = Microsoft Studio Code Host
VERBOSE: PSVersion = 7.3.2
VERBOSE: Runtime = 02/01/2023 13:57:25

Remember, when using -Verbose, any cmdlets supporting -Verbose (e.g., Get-
CimInstance) called within your command will also generate their own verbose out-
put. As such, your verbose output will contain more than what your Write-Verbose
statements generate.

 Another tip is to add a prefix to each verbose message that indicates what script
block is being called:

122 CHAPTER 13 Using all the streams

Function TryMe {
[cmdletbinding()]
Param(
[string]$ComputerName
)
Begin {
 Write-Verbose "[BEGIN] Starting: $($MyInvocation.Mycommand)"
 Write-Verbose "[BEGIN] Initializing array"
 $a = @()
} #begin
Process {
 Write-Verbose "[PROCESS] Processing $ComputerName"
 # code goes here
} #process
End {
 Write-Verbose "[END] Ending: $($MyInvocation.Mycommand)"
} #end
} #function

See how there’s a block-comment effect? This makes it easier to know exactly where
your command is. Note the use of padded spaces. We did this to make the verbose out-
put easier to read in the console:

PS C:\> tryme -ComputerName FOO -Verbose
VERBOSE: [BEGIN] Starting: TryMe
VERBOSE: [BEGIN] Initializing array
VERBOSE: [PROCESS] Processing FOO
VERBOSE: [END] Ending: TryMe

Consider including a timestamp. This is especially useful for long-running commands:

Function TryMe {
[cmdletbinding()]
Param(
[string]$ComputerName
)
Begin {
 Write-Verbose "[$((get-date).TimeOfDay.ToString()) BEGIN] Starting:
 $($MyInvocation.Mycommand)"
 Write-Verbose "[$((get-date).TimeOfDay.ToString()) BEGIN] `
 Initializing array"
 $a = @()
} #begin
Process {
 Write-Verbose "[$((get-date).TimeOfDay.ToString()) PROCESS] Processing
 $ComputerName"
 # code goes here
} #process
End {
 Write-Verbose "[$((get-date).TimeOfDay.ToString()) END] Ending:
 $($MyInvocation.Mycommand)"
} #end
} #function

12313.4 Information output

You’ll get verbose output like this:

VERBOSE: [15:18:55.3840626 BEGIN] Starting: TryMe
VERBOSE: [15:18:55.4040871 BEGIN] Initializing array
VERBOSE: [15:18:55.4080634 PROCESS] Processing FOO
VERBOSE: [15:18:55.4090586 END] Ending: TryMe

There’s no limit to how you can use verbose messages. It’s up to you to decide what
information would be helpful to you. With that in mind, our last tip is to include a ver-
bose message indicating your command’s name. That’s what the line $myinvocation
.mycommand provided. The built-in variable $MyInvocation can provide useful infor-
mation; the MyCommand property indicates the name of your command. This is espe-
cially helpful if your command is calling other commands. Including the type of
verbose information we’ve suggested makes it much easier to trace the flow of your
PowerShell expression.

13.4 Information output
The sixth stream was introduced in PowerShell v5, which more or less did away with its
original Write-Host cmdlet and turned Write-Host into a wrapper around Write-
Information. The Information stream is a bit different from other pipelines that can
carry messages because it’s designed to carry structured messages. It requires a bit of
preplanning to use well. But there’s still an $InformationPreference variable that can
suppress or allow the output of this stream, and it’s set to SilentlyContinue, or Off, by
default. When you run a command, you can specify -InformationAction Continue to
enable that command’s informational output.

 $InformationPreference and -InformationAction are automatically set to
Continue when you use Write-Host so that Write-Host behaves as it did in previous
versions of PowerShell.

 On a basic level, using Write-Information isn’t any different than using Write-
Verbose. The -MessageData parameter is in the first position, so you can often skip
using the parameter name and add whatever message you want to include—the
same as we did with Write-Verbose. But messages can also be tagged, usually with a
keyword such as information, instructions, or whatever you decide. The Information
stream can then be searched based on those tags. You can also run commands using the
-InformationVariable parameter to have informational messages added to a variable
that you designate. This can help keep the information messages from cluttering up
your normal output. Here’s an example:

Function Example {
 [CmdletBinding()]
 Param()
 Write-Information "First message" -tag status
 Write-Information "Note that this had no parameters" -tag notice
 Write-Information "Second message" -tag status
}
Example -InformationAction Continue -InformationVariable x

124 CHAPTER 13 Using all the streams

Using Continue this way makes it apply to all Write-Information commands inside
the Example function. If you run this (in PowerShell v5 or later), you’ll see that the
informational messages do indeed appear. If you examine $x, you’ll find its messages
too. Contrast the previous example with this:

function Example {
 [CmdletBinding()]
 Param()
 Write-Information "First message" -tag status
 Write-Information "Note that this had no parameters" -tag notice
 Write-Information "Second message" -tag status
}
Example -InformationAction SilentlyContinue -IV x

This time, the messages don’t appear because we used SilentlyContinue. But the com-
mands still run and work, and if you were to examine $x, you’d find all three messages.
Notice that we shortened -InformationVariable to its -IV alias to save some room.

 Let’s now go one step further:

function Example {
 [CmdletBinding()]
 Param()
 Write-Information "First message" -tag status
 Write-Information "Note that this had no parameters" -tag notice
 Write-Information "Second message" -tag status
}
Example -InformationAction SilentlyContinue -IV x
$x | where tags -in @('notice')

In this example, only the second message, “Note that this had no parameters”, will dis-
play because we filtered that out of $x by using the Tags property of the messages.

13.4.1 A detailed Information stream example

Like verbose output, effectively using the Information stream requires some planning.
You have to figure out what needs to be logged and how it might be used, and you
need to implement your Write-Information commands when creating your tool.
Here’s a simple function to illustrate how you might use Write-Information. You can
find a file with these test functions in the code folder for this chapter at http://mng
.bz/rjgE.

Function Test-Me {
[cmdletbinding()]
Param()
Write-Information "Starting $($MyInvocation.MyCommand) " -Tags Process
Write-Information "PSVersion = $($PSVersionTable.PSVersion)" -Tags Meta
Write-Information "OS = $((Get-CimInstance Win32_operatingsystem).Caption)"`
-Tags Meta

Listing 13.2 Using an information variable

http://mng.bz/rjgE
http://mng.bz/rjgE
http://mng.bz/rjgE

12513.4 Information output

Write-Verbose "Getting top 5 processes by WorkingSet"
Get-process | sort WS -Descending | select -first 5 -OutVariable s
Write-Information ($s[0] | Out-String) -Tags Data
Write-Information "Ending $($MyInvocation.MyCommand) " -Tags Process
}

Running the command normally will give you the top five processes by working set.
Now, run it like this:

PS C:\> test-me -InformationAction Continue
Starting Test-Me
PSVersion = 7.3.2
OS = Microsoft Windows 10 Pro Insider Preview
Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id SI ProcessName
------- ------ ----- ----- ----- ------ -- -- -----------
 2145 249 856976 883488 1931 7,151.38 5948 1 firefox
 2692 126 769444 396928 ...86 1,531.13 8552 1 PowerShell
 373 59 310584 390504 1421 446.03 7172 1 slack
 395 55 186628 361964 1391 590.89 7508 1 slack
 1181 95 335932 317060 1216 375.38 1004 1 PowerShell...
Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id SI ProcessName
------- ------ ----- ----- ----- ------ -- -- -----------
 2145 249 856976 883488 1931 7,151.38 5948 1 firefox
Ending Test-Me

By setting the common parameter -InformationAction to Continue, you turn on the
Information stream, which also displays the information. This can be useful when
you’re building messages and want to see what they will do.

 Next, run the command using the -InformationVariable parameter:

PS C:\> test-me -InformationVariable inf

You won’t get the information messages because the command is running with the
default SilentlyContinue setting for information messages, suppressing them.
Instead, they’re directed to the variable inf:

PS C:\> $inf
Starting Test-Me
PSVersion = 7.3.2
OS = Microsoft Windows 10 Pro
Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id SI ProcessName
------- ------ ----- ----- ----- ------ -- -- -----------
 2142 248 857768 883332 1904 7,155.00 5948 1 firefox
Ending Test-Me

You get back a very rich object:

PS C:\> $inf | get-member
 TypeName: System.Management.Automation.InformationRecord
Name MemberType Definition
---- ---------- ----------
Equals Method bool Equals(System.Object obj)

126 CHAPTER 13 Using all the streams

GetHashCode Method int GetHashCode()
GetType Method type GetType()
ToString Method string ToString()
Computer Property string Computer {get;set;}
ManagedThreadId Property uint32 ManagedThreadId {get;set;}
MessageData Property System.Object MessageData {get;}
NativeThreadId Property uint32 NativeThreadId {get;set;}
ProcessId Property uint32 ProcessId {get;set;}
Source Property string Source {get;set;}
Tags Property System.Collections.Generic.List[string] Tags...
TimeGenerated Property datetime TimeGenerated {get;set;}
User Property string User {get;set;}

This means you can work with the data however you like:

PS C:\> $inf.where({$_.tags -contains 'meta'}) |
select Computer,Messagedata
Computer MessageData
-------- -----------
Win10-01 PSVersion = 7.3.2
Win10-01 OS = Microsoft Windows 10 Pro Insider Preview

The key takeaway is that the information parameters are irrelevant if your command
doesn’t have any Write-Information commands.

 But as we mentioned earlier, in PowerShell v5, Write-Host was refactored as a con-
duit for Write-Information. Check this revised version of the function.

Function Test-Me2 {
[cmdletbinding()]
Param()
Write-Host "Starting $($MyInvocation.MyCommand) " -foreground green
Write-Host "PSVersion = $($PSVersionTable.PSVersion)" -foreground green
Write-Host "OS = $((Get-CimInstance Win32_operatingsystem).Caption)"
 -foreground green
Write-Verbose "Getting top 5 processes by WorkingSet"
Get-Process | sort WS -Descending | select -first 5 -OutVariable s
Write-Host ($s[0] | Out-String) -foreground green
Write-Host "Ending $($MyInvocation.MyCommand) " -foreground green
}

One benefit of using Write-Host is the ability to colorize the output. Unfortunately,
even if you run the command as

test-me2 -InformationVariable inf2

the information output will be saved to $inf2. But the informational messages will
also be written to the host in green. This may not be desirable. This technique also
loses the ability to add tags.

Listing 13.3 Revised function

12713.4 Information output

 Here’s one final version that’s more a proof of concept than anything. You need to
run it for yourself to see the results.

Function Test-Me3 {
[cmdletbinding()]
Param()
if ($PSBoundParameters.ContainsKey("InformationVariable")) {
 $Info = $True
 $infVar = $PSBoundParameters["InformationVariable"]
}
if ($info) {
 Write-Host "Starting $($MyInvocation.MyCommand) " -foreground green
 (Get-Variable $infVar).value[-1].Tags.Add("Process")
 Write-Host "PSVersion = $($PSVersionTable.PSVersion)" -foreground green
 (Get-Variable $infVar).value[-1].Tags.Add("Meta")
 Write-Host "OS = $((Get-CimInstance Win32_operatingsystem).Caption)"
 -foreground green
 (Get-Variable $infVar).value[-1].Tags.Add("Meta")
}
Write-Verbose "Getting top 5 processes by WorkingSet"
Get-process | sort WS -Descending | select -first 5 -OutVariable s
if ($info) {
 Write-Host ($s[0] | Out-String) -foreground green
 (Get-Variable $infVar).value[-1].Tags.Add("Data")
 Write-Host "Ending $($MyInvocation.MyCommand) " -foreground green
 (Get-Variable $infVar).value[-1].Tags.Add("Process")
}
}

This function tests whether –InformationVariable was specified; if so, a variable
($Info) is switched on. When information is needed via Write-Host, the Write-Host
lines are called if $Info is True. Immediately after each line, a tag is added to the
information variable:

test-me3 -InformationVariable inf3

This displays the information messages in green and generates the information variable:

PS C:\> $inf3 | Group {$_.tags -join "-"}
Count Name Group
----- ---- -----
 2 PSHOST-Process {Starting Test-Me3 , Ending Test-Me3 }
 2 PSHOST-Meta {PSVersion = 7.3.2, OS = Mi...}
 1 PSHOST-Data {...

Before moving on, don’t forget that information variables are just object types. You
could export the variable using Export-Clixml, store the results in a database, or cre-
ate a custom text log file from the different properties.

Listing 13.4 Proof of concept

128 CHAPTER 13 Using all the streams

 Verbose output is still a good choice when you’re using PowerShell versions before
v5. Once you’re using PowerShell v5, it may make sense to start migrating to infor-
mation messages instead, given their flexibility, tags, and searchability. For now,
because we aim for more excellent compatibility, we’re sticking with verbose output
in our examples.

13.5 Your turn
As you might imagine, you’ll add some verbose output to your tool.

13.5.1 Start here

Here’s where we left off after the previous chapter. You can start here (or use our code
sample from the download), or begin with your result from the previous chapter.

function Set-TMServiceLogon {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string]$ServiceName,
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string[]]$ComputerName,
 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewPassword,
 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewUser,
 [string]$ErrorLogFilePath
)
BEGIN{}
PROCESS{
 ForEach ($computer in $ComputerName) {
 $option = New-CimSessionOption -Protocol Wsman
 $session = New-CimSession -SessionOption $option `
 -ComputerName $Computer
 If ($PSBoundParameters.ContainsKey('NewUser')) {
 $args = @{'StartName'=$NewUser
 'StartPassword'=$NewPassword}
 } Else {
 $args = @{'StartPassword'=$NewPassword}
 }
 $params = @{'CimSession'=$session
 'MethodName'='Change'
 'Query'="SELECT * FROM Win32_Service " +
 "WHERE Name = '$ServiceName'"
 'Arguments'=$args}
 $ret = Invoke-CimMethod @params
 switch ($ret.ReturnValue) {
 0 { $status = "Success" }

Listing 13.5 Set-TMServiceLogon

12913.5 Your turn

 22 { $status = "Invalid Account" }
 Default { $status = "Failed: $($ret.ReturnValue)" }
 }
 $props = @{'ComputerName'=$computer
 'Status'=$status}
 $obj = New-Object -TypeName PSObject -Property $props
 Write-Output $obj
 $session | Remove-CimSession
 } #foreach
} #PROCESS
END{}
} #function

13.5.2 Your task

Add some meaningful verbose output to your tool. If you see an opportunity to add
warning output, feel free to add that as well.

13.5.3 Our take

Here’s what we came up with.

function Set-TMServiceLogon {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string]$ServiceName,
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string[]]$ComputerName,
 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewPassword,
 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewUser,
 [string]$ErrorLogFilePath
)
BEGIN{}
PROCESS{
 ForEach ($computer in $ComputerName) {
 Write-Verbose "Connect to $computer on WS-MAN"
 $option = New-CimSessionOption -Protocol Wsman
 $session = New-CimSession -SessionOption $option `
 -ComputerName $Computer
 If ($PSBoundParameters.ContainsKey('NewUser')) {
 $args = @{'StartName'=$NewUser
 'StartPassword'=$NewPassword}
 } Else {
 $args = @{'StartPassword'=$NewPassword}
 Write-Warning "Not setting a new user name"
 }

Listing 13.6 Our solution

130 CHAPTER 13 Using all the streams

 Write-Verbose "Setting $servicename on $computer"
 $params = @{'CimSession'=$session
 'MethodName'='Change'
 'Query'="SELECT * FROM Win32_Service " +
 "WHERE Name = '$ServiceName'"
 'Arguments'=$args}
 $ret = Invoke-CimMethod @params
 switch ($ret.ReturnValue) {
 0 { $status = "Success" }
 22 { $status = "Invalid Account" }
 Default { $status = "Failed: $($ret.ReturnValue)" }
 }
 $props = @{'ComputerName'=$computer
 'Status'=$status}
 $obj = New-Object -TypeName PSObject -Property $props
 Write-Output $obj
 Write-Verbose "Closing connection to $computer"
 $session | Remove-CimSession
 } #foreach
} #PROCESS
END{}
} #function

Add as much verbose output as you need to provide meaningful feedback or informa-
tion. It costs you nothing to add the Write-Verbose commands, and they won’t be
activated until you run the command with -Verbose.

Summary
In this chapter, we looked into the intricacies of using all the output streams in Power-
Shell beyond just the Success stream that we are accustomed to. We explored the seven
output streams: Success, Error, Warning, Verbose, Debug, Information, and Progress.
Each stream serves a distinct purpose and can be controlled using preference vari-
ables and common parameters. We learned how to add verbose and warning output
to functions, enabling us to provide additional information and alerts during script
execution. Additionally, we discussed the importance of incorporating verbose messages
from the outset of script development for easier troubleshooting and debugging.
Finally, we explored the Information stream, which was introduced in PowerShell v5,
and its capabilities for structured messaging. Through examples and exercises, we
gained a deeper understanding of how to leverage these output streams effectively in
our PowerShell scripts, enhancing both functionality and user experience.

131

Simple help:
Making a comment

One of the things we all love about PowerShell is its help system. Like Linux’s man
pages, PowerShell’s help files can provide information, examples, instructions, and
more. So, we want to provide help with the tools we create—and you should too.
You have two ways of doing so.

 First is the easiest solution, which is comment-based help. You simply put the
help files at the top of your scripts and functions, and PowerShell will interpret
these as the help files. Second, an external help file is generally written in Mark-
down format. You can use modules such as PlatyPS to help create these files. For
now, we’ll use the simpler, single-language, comment-based help inside your
function.

14.1 Where to put your help
There are three defined places where PowerShell will look for your specially for-
matted comments to turn them into help displays:

 Just before your function’s opening function keyword, with no blank lines between the
last comment line and the function. We don’t like this spot because we prefer the
next option in this list.

 Just inside the function, after the opening function declaration, and before your
[CmdletBinding()] or Param parts. We love this spot because it’s easier to
move your help with the function if you’re copying and pasting your code
someplace else. Your comments will also collapse into the function if you use
an editor with code-folding features. This is where you’ll find that most peo-
ple stick their help.

132 CHAPTER 14 Simple help: Making a comment

 As the last thing in your function before the closing }. We’re not fans of this spot
either, because having your comments at the top of the function helps better
document the function for someone reading the code.

14.2 Getting started
As you’ll see, there’s nothing incredibly complicated about any of this. The best way to
understand is to dive in and look at an example.

function Get-MachineInfo {
<#
.SYNOPSIS
Retrieves specific information about one or more computers using WMI or
CIM.
.DESCRIPTION
This command uses either WMI or CIM to retrieve specific information about
one or more computers. You must run this command as a user with
permission to query CIM or WMI on the machines involved remotely. You can
specify a starting protocol (CIM by default), and specify
that the other protocol be used on a per-machine basis in the event of a
failure
.PARAMETER ComputerName
One or more computer names. When using WMI, this can also be IP addresses.
IP addresses may not work for CIM.
.PARAMETER LogFailuresToPath
A path and filename to write failed computer names to. If omitted, no log
will be written.
.PARAMETER Protocol
Valid values: Wsman (uses CIM) or Dcom (uses WMI). It will be used for all
machines. "Wsman" is the default.
.PARAMETER ProtocolFallback
Specify this to try the other protocol if a machine fails automatically.
.EXAMPLE
Get-MachineInfo -ComputerName ONE,TWO,THREE
This example will query three machines.
.EXAMPLE
Get-ADComputer -filter * | Select -Expand Name | Get-MachineInfo
This example will attempt to query all machines in AD.
#>
 [CmdletBinding()]
 Param(
 [Parameter(ValueFromPipeline=$True,
 Mandatory=$True)]
 [Alias('CN','MachineName','Name')]
 [string[]]$ComputerName,
 [string]$LogFailuresToPath,
 [ValidateSet('Wsman','Dcom')]
 [string]$Protocol = "Wsman",
 [switch]$ProtocolFallback
)
 BEGIN {}

Listing 14.1 Comment-based help

13314.2 Getting started

 PROCESS {
 foreach ($computer in $computername) {
 if ($protocol -eq 'Dcom') {
 $option = New-CimSessionOption -Protocol Dcom
 } else {
 $option = New-CimSessionOption -Protocol Wsman
 }
 Write-Verbose "Connecting to $computer over $protocol"
 $session = New-CimSession -ComputerName $computer `
 -SessionOption $option
 Write-Verbose "Querying from $computer"
 $os_params = @{'ClassName'='Win32_OperatingSystem'
 'CimSession'=$session}
 $os = Get-CimInstance @os_params
 $cs_params = @{'ClassName'='Win32_ComputerSystem'
 'CimSession'=$session}
 $cs = Get-CimInstance @cs_params
 $sysdrive = $os.SystemDrive
 $drive_params = @{'ClassName'='Win32_LogicalDisk'
 'Filter'="DeviceId='$sysdrive'"
 'CimSession'=$session}
 $drive = Get-CimInstance @drive_params
 $proc_params = @{'ClassName'='Win32_Processor'
 'CimSession'=$session}
 $proc = Get-CimInstance @proc_params |
 Select-Object -first 1
 Write-Verbose "Closing session to $computer"
 $session | Remove-CimSession
 Write-Verbose "Outputting for $computer"
 $obj = [pscustomobject]@{'ComputerName'=$computer
 'OSVersion'=$os.version
 'SPVersion'=$os.servicepackmajorversion
 'OSBuild'=$os.buildnumber
 'Manufacturer'=$cs.manufacturer
 'Model'=$cs.model
 'Procs'=$cs.numberofprocessors
 'Cores'=$cs.numberoflogicalprocessors
 'RAM'=($cs.totalphysicalmemory / 1GB)
 'Arch'=$proc.addresswidth
 'SysDriveFreeSpace'=$drive.freespace}
 Write-Output $obj
 } #foreach
} #PROCESS
END {}
} #function

The help here reflects what we believe is the bare minimum for inclusion in the race
of upright human beings. Here are some notes to consider:

 You don’t have to use all-uppercase letters, but the period preceding each help
keyword (.SYNOPSIS, .DESCRIPTION) must be in the first column.

 We used a block comment (<#....#>); you could also use line-by-line words—
each line preceded by a # character. The block comment looks nicer and is con-
sidered a collapsible region in some scripting editors.

134 CHAPTER 14 Simple help: Making a comment

 .SYNOPSIS is meant to concisely describe what your command does.
 .DESCRIPTION is a longer description full of details, instructions, and insights.
 .PARAMETER is followed by the parameter name and then a description of the

parameters used. You don’t need to provide a listing for every single parameter.
 .EXAMPLE should be followed immediately by the example itself; PowerShell will

add a PowerShell prompt in front of this line when the help is displayed. If your
tool takes advantage of different providers, such as the registry, you can insert
an appropriate prompt to illustrate your example. The subsequent text can
explain the example.

 You can put blank comment lines between these settings to make it all easier to
read in code.

 You normally don’t need to worry about line length. PowerShell will wrap lines
as necessary, depending on the console size of the current host. But if you want
to manually break lines, a width of 80 characters is your best bet:

<#
.SYNOPSIS
Retrieves specific information about one or more computers using WMI or
CIM.
.DESCRIPTION
This command uses either WMI or CIM to retrieve specific information about
one or more computers. You must run this command as a user who has
permission
to remotely query CIM or WMI on the machines involved. You can
specify a starting protocol (CIM by default) and specify that, in the
event of a failure, the other protocol be used on a per-machine basis.
.PARAMETER ComputerName
One or more computer names. When using WMI, this can also be IP addresses.
IP addresses may not work for CIM.
.PARAMETER LogFailuresToPath
A path and filename to write failed computer names to. If omitted, no log
will be written.
.PARAMETER Protocol
Valid values: Wsman (uses CIM) or Dcom (uses WMI). It will be used for all
machines. "Wsman" is the default.
.PARAMETER ProtocolFallback
Specify this to try the other protocol if a machine fails automatically.
.EXAMPLE
Get-MachineInfo -ComputerName ONE,TWO,THREE
This example will query three machines.
.EXAMPLE
Get-ADUser -filter * | Select -Expand Name | Get-MachineInfo
This example will attempt to query all machines in AD.
#>

As we wrote, these elements are the bare minimum. You can do more—a lot more.

13514.5 Beyond comments

14.3 Going further with comment-based help
You can use an .INPUTS section to list .NET class types, one per line, that your com-
mand accepts as input from the pipeline. This is useful for helping others understand
what kinds of input your command can deal with:

.INPUTS
System.String

Similarly, .OUTPUTS lists the type names that your script outputs. Because ours pres-
ently only outputs a generic PSObject, there’s not much point in listing anything.

 A .NOTES section can list additional information, which is only displayed when the
full help is requested by the user:

.NOTES
version : 1.0.0
last updated: 1 February, 2023

A .LINK heading, followed by a topic name or a URL, appears as a Related Topic in
the help. Use one .LINK keyword for each related topic; don’t put multiples under a
single .LINK:

.LINK
https://powershell.org/forums/
.LINK
Get-CimInstance
.LINK
Get-WmiObject

There’s more too—read the about_comment_based_help topic in PowerShell for the
complete list. We’ll include a few additional inputs in upcoming chapters as we add
functionality to those help keywords, so be on the lookout.

14.4 Broken help
PowerShell is very particular about help formatting and syntax. Get just one thing
wrong, and none of the help will work, and you won’t get an error message or explana-
tion. So, if you’re not getting the help display you expect, carefully review your help
keyword spelling, period locations, and other details.

14.5 Beyond comments
Comment-based help has more than a few limitations, but it’s essential to understand
why it exists. Initially, PowerShell only supported external help, stored in XML-based
files written in a Microsoft Assistance Markup Language (MAML) dialect. MAML is
incomprehensible—like, seriously unreadable to a human—but it offers advantages
over comment-based help. Although it’s harder to create, it offers the following:

136 CHAPTER 14 Simple help: Making a comment

 It’s separated from your code to be updated independently and is the basis for
how PowerShell’s Update-Help command works.

 It can be delivered in multiple languages, allowing PowerShell to offer localized
help content to different audiences.

 It’s parsed by PowerShell into an object hierarchy, providing additional fea-
tures and functionality to help create valuable content across a broader range
of situations.

So, if MAML is so cool but so hard to make, what do you do? Back then, many differ-
ent folks made tools to copy and paste the content into a GUI that spits out MAML
files for you. It’s easier, but super time-consuming. Today, all the cool kids are using an
open source project called PlatyPS. PlatyPS lets you write your help content in Mark-
down, a simple markup language. Markdown is the native markup language of
GitHub, meaning your help files can be easily read and edited on that website if
you’re hosting a project there. PlatyPS can then take that Markdown and produce a
valid MAML file. Other tools can consume Markdown and produce HTML if you want
to have web-based help for some reason. Markdown becomes the source format for
your help (it’s easy to read and edit with any text editor—you don’t need a dedicated
Markdown editor, although VS Code has excellent Markdown plugins you can try),
and you produce everything else from there.

 If you’ve never written help for your code, PlatyPS can examine the code and cre-
ate a framework, or stub, for your Markdown help files. The stub will include all of your
parameters, with as much data as PlatyPS can figure out already filled in—like which
parameters are mandatory, which ones accept pipeline input, and so on. PlatyPS can
help you maintain your help files too. Say you add a parameter, or change one, or
whatever. PlatyPS can look at your code, figure that out, and update your existing help
files with stubs, which you can then fill in to document whatever’s new and changed in
your code fully.

 We love PlatyPS and Markdown. Although they’re more extensive topics than we
were ready to tackle for this book, we wanted to give you some direction for future
exploration.

14.6 Your turn
It’s time to add some comment-based help to your function.

14.6.1 Start here
Here’s where we left off after chapter 13. You can use this as a starting point or use
your result from that chapter.

function Set-TMServiceLogon {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,

Listing 14.2 Set-TMServiceLogon

13714.6 Your turn

 ValueFromPipelineByPropertyName=$True)]
 [string]$ServiceName,
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string[]]$ComputerName,
 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewPassword,
 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewUser,
 [string]$ErrorLogFilePath
)
BEGIN{}
PROCESS{
 ForEach ($computer in $ComputerName) {
 Write-Verbose "Connect to $computer on WS-MAN"
 $option = New-CimSessionOption -Protocol Wsman
 $session = New-CimSession -SessionOption $option `
 -ComputerName $Computer
 If ($PSBoundParameters.ContainsKey('NewUser')) {
 $args = @{'StartName'=$NewUser
 'StartPassword'=$NewPassword}
 } Else {
 $args = @{'StartPassword'=$NewPassword}
 Write-Warning "Not setting a new user name"
 }
 Write-Verbose "Setting $servicename on $computer"
 $params = @{'CimSession'=$session
 'MethodName'='Change'
 'Query'="SELECT * FROM Win32_Service " +
 "WHERE Name = '$ServiceName'"
 'Arguments'=$args}
 $ret = Invoke-CimMethod @params
 switch ($ret.ReturnValue) {
 0 { $status = "Success" }
 22 { $status = "Invalid Account" }
 Default { $status = "Failed: $($ret.ReturnValue)" }
 }
 $props = @{'ComputerName'=$computer
 'Status'=$status}
 $obj = New-Object -TypeName PSObject -Property $props
 Write-Output $obj
 Write-Verbose "Closing connection to $computer"
 $session | Remove-CimSession
 } #foreach
} #PROCESS
END{}
} #function

14.6.2 Your task

At a minimum, add the following to your tool:

 Synopsis
 Description

138 CHAPTER 14 Simple help: Making a comment

 Parameter descriptions
 Two examples, including descriptions

Import your module, and test your help (e.g., Help Set-TMServiceLogon -ShowWindow)
to make sure it works.

14.6.3 Our take

Here’s the help we came up with. As always, you’ll find this in the code downloads at
http://mng.bz/rjgE, under this chapter’s folder.

function Set-TMServiceLogon {
<#
.SYNOPSIS
Sets service login name and password.
.DESCRIPTION
This command uses either CIM (default) or WMI to
set the service password, and optionally the logon
user name, for a service, which can be running on
one or more remote machines. You must run this command
as a user who has permission to perform this task,
remotely, on the computers involved.
.PARAMETER ServiceName
The name of the service. Query the Win32_Service class
to verify that you know the correct name.
.PARAMETER ComputerName
One or more computer names. Using IP addresses will
fail with CIM; they will work with WMI. CIM is always
attempted first.
.PARAMETER NewPassword
A plain-text string of the new password.
.PARAMETER NewUser
Optional; the new logon user name, in DOMAIN\USER
format.
.PARAMETER ErrorLogFilePath
If provided, this is a path and filename of a text
file where failed computer names will be logged.
#>
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string]$ServiceName,
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string[]]$ComputerName,
 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewPassword,
 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewUser,

Listing 14.3 Our solution

http://mng.bz/rjgE

13914.6 Your turn

 [string]$ErrorLogFilePath
)
BEGIN{}
PROCESS{
 ForEach ($computer in $ComputerName) {
 Write-Verbose "Connect to $computer on WS-MAN"
 $option = New-CimSessionOption -Protocol Wsman
 $session = New-CimSession -SessionOption $option `
 -ComputerName $Computer
 If ($PSBoundParameters.ContainsKey('NewUser')) {
 $args = @{'StartName'=$NewUser
 'StartPassword'=$NewPassword}
 } Else {
 $args = @{'StartPassword'=$NewPassword}
 Write-Warning "Not setting a new user name"
 }
 Write-Verbose "Setting $servicename on $computer"
 $params = @{'CimSession'=$session
 'MethodName'='Change'
 'Query'="SELECT * FROM Win32_Service " +
 "WHERE Name = '$ServiceName'"
 'Arguments'=$args}
 $ret = Invoke-CimMethod @params
 switch ($ret.ReturnValue) {
 0 { $status = "Success" }
 22 { $status = "Invalid Account" }
 Default { $status = "Failed: $($ret.ReturnValue)" }
 }
 $props = @{'ComputerName'=$computer
 'Status'=$status}
 $obj = New-Object -TypeName PSObject -Property $props
 Write-Output $obj
 Write-Verbose "Closing connection to $computer"
 $session | Remove-CimSession
 } #foreach
} #PROCESS
END{}
} #function

Adding comment-based help doesn’t have to be a tedious chore. Use the snippets fea-
ture of your scripting editor to create a template.

 Before we sign off, here’s a quick pro tip: comment-based help tolerates extra
whitespace. So instead of

.SYNOPSIS
Sets service login name and password.
.DESCRIPTION
This command uses either CIM (default) or WMI to
set the service password, and optionally the logon
user name for a service which can be running on
one or more remote machines. You must run this command
as a user who has permission to perform this task,
remotely, on the computers involved.
.PARAMETER ServiceName

140 CHAPTER 14 Simple help: Making a comment

The name of the service. Query the Win32_Service class
to verify that you know the correct name.

you could do this:

.SYNOPSIS
Sets service login name and password.

.DESCRIPTION

This command uses either CIM (default) or WMI to
set the service password and, optionally, the logon
user name for a service, which can run on
one or more remote machines. You must run this command
as a user who has permission to perform this task
remotely on the computers involved.

.PARAMETER ServiceName
The name of the service. Query the Win32_Service class
to verify that you know the correct name.

Those extra blank lines go a long way toward making your code more readable, and
they don’t affect the help file created from your comments.

Summary
In this chapter, we looked into the significance of incorporating help documentation
into PowerShell scripts and functions using comment-based help, essential for users to
comprehend tool usage effectively. It underscores two approaches: comment-based
help and external help files. Comment-based help entails inserting specially format-
ted comments at the start of scripts or functions, which PowerShell interprets as help
files. We detailed the three designated places where PowerShell searches for these
comments within functions. We offered a practical demonstration of integrating
comment-based help into a function, exemplified by Get-MachineInfo, featuring sec-
tions like SYNOPSIS, DESCRIPTION, PARAMETER, and EXAMPLE for a holistic
understanding of function purpose, parameters, and usage. Emphasis was placed on
correct formatting, including uppercase letters for help keywords, block comments,
and proper spacing for code readability. Advanced topics like .INPUTS, .OUTPUTS,
.NOTES, and .LINK sections were introduced for added information and related top-
ics, alongside addressing broken help formatting. Furthermore, we briefly introduced
PlatyPS, enabling help content composition in Markdown format, convertible into
valid MAML files, for enhanced flexibility and ease of use. While PlatyPS and Mark-
down offer more advanced features, they are explored beyond the chapter’s scope.

 Chapter 14 furnished a thorough overview of comment-based help in PowerShell
scripting, accentuating its significance, furnishing practical illustrations, and explor-
ing advanced concepts and tools for augmenting help documentation.

141

Errors and how
to deal with them

You have much functionality yet to write in the tool you’ve been building, and
we’ve been deferring a lot of it to this point. In this chapter, we’ll focus on captur-
ing, dealing with, logging, and otherwise handling errors the tool may encounter.

NOTE PowerShell.org offers a free e-book, The Big Book of PowerShell Error
Handling, which dives into this topic from a more technical reference per-
spective (https://PowerShell.org/free-resources/). We recommend check-
ing it out once you’ve completed this tutorial-focused chapter.

15.1 Understanding errors and exceptions
PowerShell defines two broad types of bad situations: errors and exceptions.
Because most PowerShell commands are designed to deal with multiple things at
once, and because a problem with one thing doesn’t mean you want to stop dealing
with all the other things, PowerShell tries to err on the side of “keep going until it
breaks.” So, PowerShell will often emit an error when something goes wrong in a
command and keep going. For example:

Get-Service -Name BITS, Nobody, WinRM

No service is called Nobody, so PowerShell will emit an error on that second item
(notice the grayed-out text in figure 15.1. But, by default, PowerShell continues
processing the third item in the list. When PowerShell is in this “keep-going”
mode, you can’t have your code respond to the problem condition. If you want to
do something about the problem, you must change PowerShell’s default response
to this -terminating error.

https://PowerShell.org/free-resources/

142 CHAPTER 15 Errors and how to deal with them

At a global level, PowerShell defines an $ErrorActionPreference variable, which tells
PowerShell what to do in the event of a nonterminating error. This variable tells Power-
Shell what to do when a problem arises, but PowerShell can keep going. The default
value for this variable is Continue, which is described here along with the other options:

 Continue—Emits an error message and keeps going. Your code can’t detect
that a problem occurred, so you can’t do anything else.

 SilentlyContinue—Doesn’t emit an error message and keeps going. Again,
you can’t detect the problem or respond to it yourself.

 Inquire—Displays a prompt and asks the user whether to continue or stop.
 Stop—Turns the nonterminating error into a terminating exception and stops run-

ning the command. This is something your code can detect and respond to.
 Ignore—Not a value for this preference variable, but it can be used on the

-Error-Action parameter, which we’ll cover in a moment. Its behavior is simi-
lar to SilentlyContinue.

 Suspend—Only applies to errors in a PowerShell workflow, which is outside the
scope of this book.

TRY IT NOW Run $ErrorActionPreference from a PowerShell prompt. You
should be set to Continue unless it has been changed already.

It’s considered best practice to leave $ErrorActionPreference as is. Instead, you’ll typi-
cally want to specify a behavior per command. You can do this using the -ErrorAction
common parameter or its alias (-EA, used here to save space in this book), which
exists on every PowerShell command—even the ones you write yourself that include
[CmdletBinding()]. For example, try running these commands, and note the differ-
ent behaviors:

Get-Service -Name BITS, Nobody, WinRM -EA Continue
Get-Service -Name BITS, Nobody, WinRM -EA SilentlyContinue
Get-Service -Name BITS, Nobody, WinRM -EA Inquire
Get-Service -Name BITS, Nobody, WinRM -EA Ignore
Get-Service -Name BITS, Nobody, WinRM -EA Stop

Remember that you can’t handle exceptions in your code unless PowerShell generates
an exception. Unless you run them with the Stop error action, most commands won’t

Figure 15.1 Error message for Nobody service

14315.3 Two reasons for exception handling

generate an exception. One of the biggest mistakes people make is forgetting to add
-EA Stop to a command where they want to handle the problem.

15.2 Bad handling
We see people engage in two fundamentally bad practices. These aren’t always, always,
always bad, but they’re usually bad, so we want to bring them to your attention.

 First up is globally setting the preference variable right at the top of a script or
function:

$ErrorActionPreference='SilentlyContinue'

In the olden days of VBScript, people used On Error Resume Next. This says, “I don’t
want to know if anything is wrong with my code.” People do this misguidedly to sup-
press possible errors that they know won’t matter. For example, attempting to delete a
file that doesn’t exist will cause an error—but you probably don’t care because the
mission is accomplished either way, right? But to suppress that unwanted error, you
should use -EA SilentlyContinue on the Remove-Item command instead of globally
suppressing all errors in your script.

 The other bad practice is slightly more subtle and can arise in the same situation.
Suppose you run Remove-Item with -EA SilentlyContinue, and then suppose you try
to delete a file that does exist but doesn’t have permission to delete. You’ll suppress
the error and wonder why the file still exists.

 Before you start suppressing errors, make sure you’ve thought it through. Nothing
is more vexing than spending hours debugging a script because you suppressed an
error message that would have told you where the problem was. We can’t tell you how
often this comes up in forum questions.

15.3 Two reasons for exception handling
There are two broad reasons to handle exceptions in your code. (Notice that we’re
using their official name and exceptions to differentiate them from the non-handleable
errors we wrote about previously.)

 Reason 1 is that you plan to run your tool out of your view. Perhaps it’s a scheduled
task, or maybe you’re writing tools that remote customers will use. In either case, you
want to make sure you have evidence for any problems that occur to help you with
debugging. In this scenario, you might globally set $ErrorActionPreference to stop
at the top of your script and wrap the entire script in an error-handling construct. Any
errors, even unanticipated ones, can be trapped and logged for diagnostic purposes.
Although this scenario is valid, it isn’t the one we’ll focus on in this book.

 We’ll focus on reason 2: you’re running a command where you can anticipate a
certain kind of problem and want to deal with that problem actively. This might be a
failure to connect to a computer, a failure to log on to something, or another sce-
nario. Let’s dig into that with the tool you’ve been building.

144 CHAPTER 15 Errors and how to deal with them

15.4 Handling exceptions in your tool
In the tool you’ve been building, you can anticipate the New-CimSession command
running into problems: a computer might be offline or nonexistent, or the computer
might not work with the selected protocol. You want to catch that condition and,
depending on the parameters you ran with, log the failed computer name to a text file
and/or try again using the other protocol. You’ll start by focusing on the command
that could cause the problem and making sure it will generate a terminating exception if
it runs into trouble. To do so, change

Write-Verbose "Connecting to $computer over $protocol"
$session = New-CimSession -ComputerName $computer `
 -SessionOption $option
to
Write-Verbose "Connecting to $computer over $protocol"
$params = @{'ComputerName'=$Computer
 'SessionOption'=$option
 'ErrorAction'='Stop'}
$session = New-CimSession @params

It’s important to notice that you’ve already constructed the command so that it only
attempts to connect to one computer at a time using the ForEach loop. Any time
you’ll be handling errors, it’s crucial that you construct things so that only one thing
can fail at a time. That’s because you’re telling PowerShell not to continue. If you
attempted five computers at once, a failure in any of them would result in the rest of
them never being attempted. Make sure you understand why this design principle is
so important!

 Just changing the error action to Stop isn’t enough, though. You also need to wrap
your code in a Try/Catch construct. If an exception occurs in the Try block, then all
the subsequent code in the Try block will be skipped, and the Catch block will exe-
cute instead. So the PROCESS{} block of the function now looks like this:

 PROCESS {
 ForEach ($computer in $ComputerName) {
 if ($protocol -eq 'Dcom') {
 $option = New-CimSessionOption -Protocol Dcom
 } else {
 $option = New-CimSessionOption -Protocol Wsman
 }
 Try {
 Write-Verbose "Connecting to $computer over $protocol"
 $params = @{'ComputerName'=$Computer
 'SessionOption'=$option
 'ErrorAction'='Stop'}
 $session = New-CimSession @params
 Write-Verbose "Querying from $computer"
 $os_params = @{'ClassName'='Win32_OperatingSystem'
 'CimSession'=$session}
 $os = Get-CimInstance @os_params
 $cs_params = @{'ClassName'='Win32_ComputerSystem'

Try script
block

14515.4 Handling exceptions in your tool

 'CimSession'=$session}
 $cs = Get-CimInstance @cs_params
 $sysdrive = $os.SystemDrive
 $drive_params = @{'ClassName'='Win32_LogicalDisk'
 'Filter'="DeviceId='$sysdrive'"
 'CimSession'=$session}
 $drive = Get-CimInstance @drive_params
 $proc_params = @{'ClassName'='Win32_Processor'
 'CimSession'=$session}
 $proc = Get-CimInstance @proc_params |
 Select-Object -first 1
 Write-Verbose "Closing session to $computer"
 $session | Remove-CimSession
 Write-Verbose "Outputting for $computer"
 $obj = [pscustomobject]@{'ComputerName'=$computer
 'OSVersion'=$os.version
 'SPVersion'=$os.servicepackmajorversion
 'OSBuild'=$os.buildnumber
 'Manufacturer'=$cs.manufacturer
 'Model'=$cs.model
 'Procs'=$cs.numberofprocessors
 'Cores'=$cs.numberoflogicalprocessors
 'RAM'=($cs.totalphysicalmemory / 1GB)
 'Arch'=$proc.addresswidth
 'SysDriveFreeSpace'=$drive.freespace}
 Write-Output $obj
 } Catch {
 } #try/catch
 } #foreach
} #PROCESS

The idea is that if a problem happens with New-CimSession, everything else is aban-
doned. That should make sense because without a session, you can’t execute queries.
Without queries, you can’t generate results. Without results, you can’t produce out-
put. If one thing goes wrong, you need to quit.

 Now, let’s focus on what you’ll do if an error—sorry, an exception—does occur:

} Catch {
 Write-Warning "FAILED $computer on $protocol"
 # Did we specify protocol fallback?
 # If so, try again. If we specified logging,
 # we won't log a problem here - we'll let
 # the logging occur if this fallback also
 # fails
 If ($ProtocolFallback) {
 If ($Protocol -eq 'Dcom') {
 $newprotocol = 'Wsman'
 } else {
 $newprotocol = 'Dcom'
 } #if protocol
 Write-Verbose "Trying again with $newprotocol"
 $params = @{'ComputerName'=$Computer
 'Protocol'=$newprotocol

Catch script
block

Writes a warning
message

Tests for a
parameter

146 CHAPTER 15 Errors and how to deal with them

 'ProtocolFallback'=$False}
 If ($PSBoundParameters.ContainsKey('LogFailuresToPath')){
 $params += @{'LogFailuresToPath'=$LogFailuresToPath}
 } #if logging
 Get-MachineInfo @params
 } #if protocolfallback
 # if we didn't specify fallback, but we
 # did specify logging, then log the error,
 # because we won't be trying again
 If (-not $ProtocolFallback -and
 $PSBoundParameters.ContainsKey('LogFailuresToPath')){
 Write-Verbose "Logging to $LogFailuresToPath"
 $computer | Out-File $LogFailuresToPath -Append
 } # if write to log
} #try/catch

Here’s what’s happening:

1 Within the Catch block, you can write out a warning message for the user’s ben-
efit. They can suppress these by adding -Warning-Action SilentlyContinue
when running the command.

2 You look to see whether -ProtocolFallback was specified. If it was, you set
$newprotocol to be whatever protocol you weren’t already running with. You
then set up a parameter hash table with your current computer name and that
new protocol, and you specify $False for ProtocolFallback. Because you’ve
already fallen back on the protocol, there’s no sense in doing it again and falling
into an endless loop. If you’re running with -LogFailuresToPath, add that
parameter to your hash table, and—here’s the fun part—call your function using
these parameters. Its output will become part of your output, giving you an easy
way to try the other protocol without duplicating a bunch of code.

3 Look to see if you aren’t running with -ProtocolFallback, but are running with
-LogFailuresToPath so that you can log the failed computer name. Why don’t
you log the computer name to begin with? If the current protocol fails, but
you’re asked to use protocol fallback, your self-call to Get-MachineInfo will take
care of the logging if it fails with the second protocol.

This is some complex logic—go through it a few times to make sure you understand it!

15.5 Capturing the exception
The example so far hasn’t cared what problem happened with New-CimSession; you
have the same response to any possible failure. In some cases, you may want to know
what exception happened. An easy way to do this is to specify the -ErrorVariable, or
-EV, parameter and provide the name of a variable (remembering that $ isn’t part of a
variable’s name, so you omit the $ here). Whatever exception happens will be placed
in the specified variable for you to work with.

No protocol
fallback,
but logging
requested

14715.7 Going further with exception handling

15.6 Handling exceptions for non-commands
What if you’re running something—like a .NET Framework method—that doesn’t
have an -ErrorAction parameter? In most cases, you can run it in a Try block as is
because most of these methods will throw trappable, terminating exceptions if some-
thing goes wrong. The nonterminating exception thing is unique to PowerShell com-
mands like functions and cmdlets.

 But you still may have instances when you need to do this:

Try {
 $ErrorActionPreference = "Stop"
 # run something that doesn't have -ErrorAction
 $ErrorActionPreference = "Continue"
} Catch {
 # ...
}

This is your error handling of last resort. You’re temporarily modifying $Error-
ActionPreference for the duration of the one command (or whatever) for which you
want to catch an exception. This isn’t a common situation in our experience, but we
figured we should point it out.

15.7 Going further with exception handling
It’s possible to have multiple Catch blocks after a given Try block, with each Catch
dealing with a specific type of exception. For example, if a file deletion failed, you
could react differently for a File Not Found or an Access Denied situation. To do this,
you’ll need to know the .NET Framework type name of each exception you want to
call out separately. The Big Book of PowerShell Error Handling e-book (https://PowerShell
.org/free-resources/) lists common type names and advice for figuring these out
(e.g., generating the error on your own in an experiment and then figuring out what
the exception type name was). Broadly, the syntax looks like this:

Try {
 # something here generates an exception
} Catch [Exception.Type.One] {
 # deal with that exception here
} Catch [Exception.Type.Two] {
 # deal with the other exception here
} Catch {
 # deal with anything else here
} Finally {
 # run something else
}

Also shown in that example is the optional Finally block, which will always run after
the Try or the Catch, whether or not an exception occurs.

https://PowerShell.org/free-resources/
https://PowerShell.org/free-resources/
https://PowerShell.org/free-resources/

148 CHAPTER 15 Errors and how to deal with them

15.8 Your turn
It’s time to deal with errors in your code.

15.8.1 Start here

This is where we left off at the end of chapter 14. You can use this as a starting point or
use your own results from that chapter.

function Set-TMServiceLogon {
<#
.SYNOPSIS
Sets service login name and password.
.DESCRIPTION
This command uses either CIM (default) or WMI to
set the service password and, optionally, the logon
user name, for a service that can run on
one or more remote machines. You must run this command
as a user with permission to perform this task,
remotely on the computers involved.
.PARAMETER ServiceName
The name of the service. Query the Win32_Service class
to verify that you know the correct name.
.PARAMETER ComputerName
One or more computer names. Using IP addresses will
fail with CIM; they will work with WMI. CIM is always
attempted first.
.PARAMETER NewPassword
A plain-text string of the new password.
.PARAMETER NewUser
Optional; the new logon user name, in DOMAIN\USER
format.
.PARAMETER ErrorLogFilePath
If provided, this is a path and filename of a text
file where failed computer names will be logged.
#>
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,

Deprecated exception-handling
In your internet travels, you may run across a Trap construct in PowerShell. This
dates back to v1, when the PowerShell team frankly didn’t have time to get Try/
Catch working, and Trap was the best short-term fix they could come up with. Trap
is deprecated, meaning it’s left in the product for backward compatibility, but you’re
not intended to use it in newly written code. For that reason, we’re not covering it
here. It does have some uses in global, “I want to catch and log any possible error”
situations, but Try/Catch is considered a more structured, professional approach to
exception handling, and we recommend that you stick with it.

Listing 15.1 Set TMServiceLogon

14915.8 Your turn

 ValueFromPipelineByPropertyName=$True)]
 [string]$ServiceName,
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string[]]$ComputerName,
 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewPassword,
 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewUser,
 [string]$ErrorLogFilePath
)
BEGIN{}
PROCESS{
 ForEach ($computer in $ComputerName) {
 Write-Verbose "Connect to $computer on WS-MAN"
 $option = New-CimSessionOption -Protocol Wsman
 $session = New-CimSession -SessionOption $option `
 -ComputerName $Computer
 If ($PSBoundParameters.ContainsKey('NewUser')) {
 $args = @{'StartName'=$NewUser
 'StartPassword'=$NewPassword}
 } Else {
 $args = @{'StartPassword'=$NewPassword}
 Write-Warning "Not setting a new user name"
 }
 Write-Verbose "Setting $servicename on $computer"
 $params = @{'CimSession'=$session
 'MethodName'='Change'
 'Query'="SELECT * FROM Win32_Service " +
 "WHERE Name = '$ServiceName'"
 'Arguments'=$args}
 $ret = Invoke-CimMethod @params
 switch ($ret.ReturnValue) {
 0 { $status = "Success" }
 22 { $status = "Invalid Account" }
 Default { $status = "Failed: $($ret.ReturnValue)" }
 }
 $props = @{'ComputerName'=$computer
 'Status'=$status}
 $obj = New-Object -TypeName PSObject -Property $props
 Write-Output $obj
 Write-Verbose "Closing connection to $computer"
 $session | Remove-CimSession
 } #foreach
} #PROCESS
END{}
} #function

15.8.2 Your task

Your job is to add error handling to your tool. Remember, in the event of an error, the
design calls for you to try the distributed component object model (DCOM) protocol
automatically because you’re always starting with the Web Services Management

150 CHAPTER 15 Errors and how to deal with them

(WSman) protocol. If a computer fails, you should log it only if logging was specified
and only after both protocols have been attempted.

 Your task is made a little more difficult because the parameter design doesn’t
include a parameter for the protocol. That means you can’t just call your own func-
tion again with a different protocol parameter! Instead, you’ll have to write a loop that
will execute your code up to two times. One such loop might look something like this:

Do {
 # code goes here
} Until ($something -eq 'else')

This kind of loop will always execute its contents at least once. It will continue execut-
ing until the condition specified at the end of the loop is $True. See if you can find the
necessary logic to add to your script.

15.8.3 Our take

Here’s what we came up with.

function Set-TMServiceLogon {
<#
.SYNOPSIS
Sets service login name and password.
.DESCRIPTION
This command uses either CIM (default) or WMI to
set the service password, and optionally the logon
user name, for a service, which can be running on
one or more remote machines. You must run this command
as a user who has permission to peform this task,
remotely, on the computers involved.
.PARAMETER ServiceName
The name of the service. Query the Win32_Service class
to verify that you know the correct name.
.PARAMETER ComputerName
One or more computer names. Using IP addresses will
fail with CIM; they will work with WMI. CIM is always
attempted first.
.PARAMETER NewPassword
A plain-text string of the new password.
.PARAMETER NewUser
Optional; the new logon user name, in DOMAIN\USER
format.
.PARAMETER ErrorLogFilePath
If provided, this is a path and filename of a text
file where failed computer names will be logged.
#>
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,
 ValueFromPipelineByPropertyName=$True)]

Listing 15.2 Our solution

15115.8 Your turn

 [string]$ServiceName,
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string[]]$ComputerName,
 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewPassword,
 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewUser,
 [string]$ErrorLogFilePath
)
BEGIN{}
PROCESS{
 ForEach ($computer in $ComputerName) {
 Do {
 Write-Verbose "Connect to $computer on WS-MAN"
 $protocol = "Wsman"
 Try {
 $option = New-CimSessionOption -Protocol $protocol
 $session = New-CimSession -SessionOption $option `
 -ComputerName $Computer `
 -ErrorAction Stop
 If ($PSBoundParameters.ContainsKey('NewUser')) {
 $args = @{'StartName'=$NewUser
 'StartPassword'=$NewPassword}
 } Else {
 $args = @{'StartPassword'=$NewPassword}
 Write-Warning "Not setting a new user name"
 }
 Write-Verbose "Setting $servicename on $computer"
 $params = @{'CimSession'=$session
 'MethodName'='Change'
 'Query'="SELECT * FROM Win32_Service " +
 "WHERE Name = '$ServiceName'"
 'Arguments'=$args}
 $ret = Invoke-CimMethod @params
 switch ($ret.ReturnValue) {
 0 { $status = "Success" }
 22 { $status = "Invalid Account" }
 Default { $status = "Failed: $($ret.ReturnValue)" }
 }
 $props = @{'ComputerName'=$computer
 'Status'=$status}
 $obj = New-Object -TypeName PSObject -Property $props
 Write-Output $obj
 Write-Verbose "Closing connection to $computer"
 $session | Remove-CimSession
 } Catch {
 # change protocol - if we've tried both
 # and logging was specified, log the computer
 Switch ($protocol) {
 'Wsman' { $protocol = 'Dcom' }
 'Dcom' {
 $protocol = 'Stop'

152 CHAPTER 15 Errors and how to deal with them

 if ($PSBoundParameters.ContainsKey(
'ErrorLogFilePath')) {

 Write-Warning "$computer failed; logged to
" $ErrorLogFilePath"
 $computer | Out-File $ErrorLogFilePath -Append
 } # if logging
 }
 } #switch
 } # try/catch
 } Until ($protocol -eq 'Stop')
 } #foreach
} #PROCESS
END{}
} #function

Again, apologies for any word-wrapping; consult the downloadable code samples at
http://mng.bz/rjgE for a well-formatted version.

 In this revision, we changed New-CimSessionOption to use a variable for the proto-
col. We manually set this to "Wsman" to begin with, but in the event of a failure, we
switch it to "Dcom". If it fails again, we set the protocol to Stop, which triggers an exit
from the Do loop; we also take the opportunity to log the computer name if we’re
asked to do so.

Summary
In Chapter 15, we shifted focus to error handling within the tool being developed,
addressing how to capture, manage, and log errors encountered during execution.
We introduced the distinction between errors and exceptions in PowerShell and dis-
cussed PowerShell’s default behavior of continuing execution despite encountering
errors. We also emphasized the importance of understanding and modifying the
$ErrorActionPreference variable to control PowerShell’s response to errors. Various
options for managing errors, such as Stop, Continue, and SilentlyContinue, were
explored, along with practical examples demonstrating their usage. Additionally, we
delved into best practices for error handling, including avoiding global suppression of
errors and carefully considering error logging. Advanced concepts like exception han-
dling and specifying error actions for non-PowerShell commands were also covered,
providing you with a comprehensive understanding of error management in Power-
Shell scripting. Finally, we presented you with a task to implement error handling
within some code, accompanied by a detailed solution that illustrated how to handle
errors gracefully while executing commands across multiple computers. Through
these discussions and examples, you gained the necessary skills to enhance the robust-
ness and reliability of your PowerShell scripts by effectively managing errors.

http://mng.bz/rjgE

153

Filling out a manifest

Up to this point, you’ve been relying on the PowerShell magic to make your com-
mands—within a module—run. It’s worth digging into this magic a bit because you
can do much more with it.

16.1 Module execution order
When PowerShell looks for modules, it first enumerates all the folders listed in the
PSModulePath environment variable. Each folder under each of those paths is con-
sidered a potential module.

 Within a module folder, PowerShell looks for the following:

1 A .psd1 file with the same filename as the module’s folder name. This
module manifest tells the shell what else needs to be loaded.

2 A .dll file with the same filename as the module’s folder name. This is a
compiled or binary module, usually written in C#.

3 A .psm1 file with the same filename as the module’s folder name. This is a
script module.

You’ve been using number 3 on that list. If you create a file named \Documents\
PowerShell\Modules\MyPSModule\MyPSModule.psm1, then you’ve created a script
module named “MyPSModule,” and whatever functions are in that .psm1 file will
become commands that PowerShell can run. This is a super quick and easy way to
get a module up and running, but it has some disadvantages.

 First, the module can’t easily handle things such as versioning, establishing pre-
requisites, and loading supporting files (e.g., custom formatting views, which we’ll

154 CHAPTER 16 Filling out a manifest

get to later in this book). As your modules become more complex and you iterate
them over time, you’ll need them all.

 Second, as it becomes larger and contains more commands, a script module alone
can slow down PowerShell—even if you’re not using the module—because, at launch
time, PowerShell has to figure out what modules you have and what commands they
contain. For a standalone script module, that means loading and parsing the entire file
to see what functions are lurking within. That parsing takes time, and for large mod-
ules, or if you have many of them, that time can become significant—and it’s a hit
every time you open a new PowerShell window.

 A manifest—which takes advantage of item 1 on the earlier list—solves these problems
because it allows you to specify a great deal of additional information about your module.
When used correctly, a manifest can vastly speed up PowerShell’s module-discovery time.

16.2 Creating a new manifest
Creating a new, very basic manifest is easy. Just change to your module folder, and run
New-ModuleManifest. Specify a filename for the manifest (which should be the same
as the module folder’s name, followed by the .psd1 filename extension), and specify
your existing .psm1 script module as the root module:

New-ModuleManifest –Path MyModule.psd1 –Root ./MyModule.psm1

WARNING PowerShell does exactly nothing to verify that what you’ve typed is
correct. A typo in either of these paths will create a nonfunctional manifest
and can prevent your entire module from loading until you fix your mistakes.

That example assumes you’re in a MyModule directory, making the official name of
the module MyModule. The result is something like the following (which you can and
should create to follow along). The automatically generated comments for each sec-
tion help explain:

#
Module manifest for module 'MyModule'
#
Generated by: User
#
Generated on: 7/23/2023
#

@{

Script module or binary module file associated with this manifest.
RootModule = './MyModule.psm1'

Version number of this module.
ModuleVersion = '0.0.1'

Supported PSEditions
CompatiblePSEditions = @()

15516.2 Creating a new manifest

ID used to uniquely identify this module
GUID = 'ce7775f9-e168-48d6-8e8f-f4c04696d673'

Author of this module
Author = 'User'

Company or vendor of this module
CompanyName = 'Unknown'

Copyright statement for this module
Copyright = '(c) User. All rights reserved.'

Description of the functionality provided by this module
Description = ''

Minimum version of the PowerShell engine required by this module
PowerShellVersion = ''

Name of the PowerShell host required by this module
PowerShellHostName = ''

Minimum version of the PowerShell host required by this module
PowerShellHostVersion = ''

Minimum version of Microsoft .NET Framework required by this module.
This prerequisite is valid for the PowerShell Desktop edition only.
DotNetFrameworkVersion = ''

Minimum version of the common language runtime (CLR)
required by this module. This prerequisite is valid for the
PowerShell Desktop edition only.
ClrVersion = ''

Processor architecture (None, X86, Amd64) required by this module
ProcessorArchitecture = ''

Modules that must be imported into the global environment
prior to importing this module
RequiredModules = @()

Assemblies that must be loaded prior to importing this module
RequiredAssemblies = @()

Script files (.ps1) that are run in the caller's environment
prior to importing this module.
ScriptsToProcess = @()

Type files (.ps1xml) to be loaded when importing this module
TypesToProcess = @()

Format files (.ps1xml) to be loaded when importing this module
FormatsToProcess = @()

Modules to import as nested modules of the module specified
in RootModule/ModuleToProcess
NestedModules = @()

156 CHAPTER 16 Filling out a manifest

Functions to export from this module, for best performance,
do not use wildcards and do not delete the entry, use an empty
array if there are no functions to export.
FunctionsToExport = '*'

Cmdlets to export from this module, for best performance,
do not use wildcards and do not delete the entry, use an
empty array if there are no cmdlets to export.
CmdletsToExport = '*'

Variables to export from this module
VariablesToExport = '*'

Aliases to export from this module, for best performance,
do not use wildcards and do not delete the entry, use an
empty array if there are no aliases to export.
AliasesToExport = '*'

DSC resources to export from this module
DscResourcesToExport = @()

List of all modules packaged with this module
ModuleList = @()

List of all files packaged with this module
FileList = @()

Private data to pass to the module specified in RootModule/ModuleToProcess.
This may also contain a

PSData hashtable with additional module metadata used by PowerShell.
PrivateData = @{

 PSData = @{

 # Tags applied to this module. These help with module
discovery in online galleries.
 # Tags = @()

 # A URL to the license for this module.
 # LicenseUri = ''

 # A URL to the main website for this project.
 # ProjectUri = ''

 # A URL to an icon representing this module.
 # IconUri = ''

 # ReleaseNotes of this module
 # ReleaseNotes = ''

 # Prerelease string of this module
 # Prerelease = ''

 # Flag to indicate whether the module requires explicit
user acceptance for install/update/save
 # RequireLicenseAcceptance = $false

15716.3 Examining the manifest

 # External dependent modules of this module
 # ExternalModuleDependencies = @()

 } # End of PSData hashtable

} # End of PrivateData hashtable

HelpInfo URI of this module
HelpInfoURI = ''

Default prefix for commands exported from this module.
Override the default prefix using Import-Module -Prefix.
DefaultCommandPrefix = ''

}

NOTE We’re assuming you’ll do this on a PowerShell system. The same holds
for Windows PowerShell, but the manifest that is created may look a little dif-
ferent, so don’t be alarmed.

16.3 Examining the manifest
Let’s take a look at a few critical sections in a bit more detail. It’s worth mentioning that
almost everything here can be specified in advance using the parameters of New-
ModuleManifest. Often, though, we create the bare-bones manifest shown here and
then edit it in Visual Studio Code (VS Code) when we want to add things to the module.

16.3.1 Metadata

You’ll notice a great deal of metadata, or data about the module itself, in the manifest:

 ModuleVersion is something you should get in the habit of filling out using
the standard Microsoft W.X.Y.Z version notation. If you plan to submit mod-
ules to the PowerShell Gallery (www.PowerShellGallery.com), this is manda-
tory in your manifest.

 A globally unique identifier (GUID) is a requirement generated automatically.
This uniquely identifies your module.

 Author should be your name, and CompanyName should be your organization, if
appropriate. If you’re submitting to the PowerShell Gallery, Author is mandatory.

 Copyright and Description are optional, but you should include a Description
for PowerShell Gallery submissions (it may become mandatory at some point).

 ModuleList is a list of all your module’s submodules—basically, the names of
any .psm1 files. This doesn’t do anything—it’s just here for documentation pur-
poses, and it’s rare to see this used.

 FileList is similar to ModuleList—it’s just a way to document all the files
included in the module.

158 CHAPTER 16 Filling out a manifest

16.3.2 The root module

This is the .psm1 file containing all of your functions or code to dot source the required
script files. The .psm1 file is assumed to be in the same directory as the manifest. Power-
Shell won’t complain if you leave this empty, but your module won’t behave as expected.

16.3.3 Prerequisites

Several manifest properties help PowerShell figure out whether your module can be
run on a given computer:

 CompatiblePSEditions—This tells the engine if this module can run in Power-
Shell or Windows PowerShell. The two options are Core and Desktop.

 PowerShellVersion—This specifies the minimum version of PowerShell needed
for the module to run.

 PowerShellHostName and PowerShellHostVersion—These describe the host
application and version in which your module runs. This can restrict modules to
only certain hosting situations, such as "Console-Host" or another environment.

 DotNetFrameworkVersion and CLRVersion—These describe any minimum ver-
sion requirements of the .NET Framework or the Framework’s Common Lan-
guage Runtime (CLR).

 ProcessorArchitecture—This documents platform dependencies, such as X86
or Amd64.

 RequiredModules. This is an array of module names that must be imported
before your module’s commands are loaded. PowerShell will attempt to load
these for you and will fail—and refuse to load your module—if it can’t load these
prerequisites for some reason.

 NestedModules—This is a little different from RequiredModules. Modules
included in RequiredModules are loaded into the global session, which means
they won’t unload when your module is unloaded. Modules in NestedModules
are visible only to your module and can’t be seen or used by the person who
loaded your module (unless that person also manually imports them).

16.3.4 Scripts, types, and formats

You can specify a number of supporting elements for your module. These are loaded
and unloaded along with the module. Each of these elements is an array, which means
you can specify zero or more elements to load:

 ScriptsToProcess—This lists PowerShell scripts (.ps1 files) that should be run
before your module is loaded. This is a little unusual, but you can use it to run
things such as setup tasks. It’s also possible to put those setup commands into
the module .psm1 file, although breaking them into a separate preload script
can help make the code easier to read and maintain.

 TypesToProcess—This is a list of PowerShell Extensible Type System (ETS)
extensions—usually .ps1xml files—that your module needs to load.

15916.3 Examining the manifest

 FormatsToProcess—This is a list of PowerShell formatting view files—usually
.format.ps1xml files—that your module needs to load. We’ll cover these later in
this book.

Although you can provide full paths to any of these, the convention is to include each
supporting element in the module’s folder and to refer to ./filename in the array.

16.3.5 Exporting members

This is where you can save PowerShell some load time. Rather than forcing it to parse
your entire script module and figure out what functions exist, you can declare those
functions as being exported from the module. There’s a side effect: any functions you
don’t export become private to the module. That means anything else within the mod-
ule can see and use those functions, but the person who loaded your module won’t see
them or be able to use them. You can use this feature to create helper functions that
are used by other commands in your module but that aren’t exposed to anyone else.

 You can export five types of things. Each of these is an array within the manifest:

 FunctionsToExport—Holds functions you want people to be able to use as
commands.

 CmdletsToExport—Won’t be used in a script module—this is the equivalent of
FunctionsToExport when publishing a compiled module.

 VariablesToExport—Holds module-level variables you want added to the
global scope. This is a good way to publish variables that set things such as log
filenames, database connection strings, and so on.

 AliasesToExport—Holds aliases that you define in your module (using New-
Alias) and that you want to be exposed when your module is loaded.

 DscResourcesToExport—A special list related to building Desired State Config-
uration (DSC) resource modules. This is a special type of PowerShell tool that
we aren’t covering in this book.

As a note, it’s legal for most of these to specify *, meaning “export everything.” Sadly,
that doesn’t help PowerShell in a performance sense because it still forces PowerShell
to open and parse the entire script module to see exactly what “everything” entails. As
a best practice, avoid using *, and take the time to list exported items explicitly.

Exporting exceptions
You need to be aware of a few exporting exceptions. If you’re creating a script mod-
ule instead of a binary, compiled module—which is exporting and needs to export
variables and aliases—then you must use Export-ModuleMember at the end of
your .psm1 file. There’s no harm in using Export-ModuleMember to list your func-
tions here as well as in the manifest. You might have a line like this at the end of
your .psm1 file:

Export-modulemember -function Get-Foo,Set-Foo -variable myfoo -alias gf,sf

160 CHAPTER 16 Filling out a manifest

16.4 Your turn
We’ll give you a module (as a .psm1 file) and ask you to create a corresponding mani-
fest. This shouldn’t take long!

16.4.1 Start here

The following listing shows the contents of MyTools.psm1, a script module.

function Get-TMIPInfo {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True)]
 [string[]]$ComputerName
)
 BEGIN {}
 PROCESS {
 ForEach ($comp in $ComputerName) {
 Write-Verbose "Connecting to $comp"
 $s = New-CimSession -ComputerName $comp
 $adapters = Get-NetAdapter -CimSession $s |
 Where Status -ne 'Disconnected'
 ForEach ($adapter in $adapters) {
 Write-Verbose " Interface $($adapter.interfaceindex)"
 $addresses = Get-NetIPAddress
" -InterfaceIndex $adapter.InterfaceIndex `
 -CimSession $s
 ForEach ($address in $addresses) {
 $props = @{'ComputerName'=$Comp
 'Index'=$adapter.interfaceindex
 'Name'=$adapter.interfacealias
 'MAC'=$adapter.macaddress
 'IPAddress'=$address.ipaddress}
 New-Object -TypeName PSObject -Property $props
 } #foreach address
 } #adapter
 $s | Remove-CimSession
 } #foreach computer
 } #process
 END {}
} #function

We assume you’ve saved this as \Documents\PowerShell\Modules\MyTools\MyTools.psm1.

(continued)
For consistency, you might get into the habit of using Export-ModuleMember and the
manifest. PowerShell is a very active product, and you never know when a future ver-
sion will allow exporting variables and aliases in a manifest. Cover all your bases.

Listing 16.1 MyTools.psm1 script module

16116.4 Your turn

16.4.2 Your task

Create a manifest for the MyTools module. In it, do the following:

 Specify at least a version, a description, and an author.
 Specify MyTools.psm1 as the root module.
 Export the Get-TMIPInfo function.

16.4.3 Our take

We ran this command (we’ve prettied up the formatting here for readability; we typed
it as one long line of text):

New-ModuleManifest -Path MyTools.psd1
 -RootModule ./MyTools.psm1
 -ModuleVersion 1.0.0.0
 -Author 'Jeff and Don'
 -Description 'A test module'
 -FunctionsToExport @('Get-TMIPInfo')

For the sake of the book, we’ve truncated some of the comments. The result is some-
thing like this:

#
Module manifest for module 'MyModule'
#
Generated by: User
#
Generated on: 6/19/2017
#
@{
Script module or binary module file associated with this manifest.
RootModule = 'MyModule.psm1'
Version number of this module.
ModuleVersion = '1.0'
Supported PSEditions
CompatiblePSEditions = @()
ID used to uniquely identify this module
GUID = 'ea4d119b-6bcf-4540-a389-67cf7d261726'
Author of this module
Author = 'User'
Company or vendor of this module
CompanyName = 'Unknown'
Copyright statement for this module
Copyright = '(c) 2017 User. All rights reserved.'
Description of the functionality provided by this module
Description = ''
Minimum version of the Windows PowerShell engine required by this module
PowerShellVersion = ''
Name of the Windows PowerShell host required by this module
PowerShellHostName = ''
Minimum version of the Windows PowerShell host required by this module
PowerShellHostVersion = ''
Minimum version of Microsoft .NET Framework required by this module. ...

162 CHAPTER 16 Filling out a manifest

DotNetFrameworkVersion = ''
Minimum version of the common language runtime (CLR) required by this ...
CLRVersion = ''
Processor architecture (None, X86, Amd64) required by this module
ProcessorArchitecture = ''
Modules that must be imported into the global environment prior ...
RequiredModules = @()
Assemblies that must be loaded prior to importing this module
RequiredAssemblies = @()
Script files (.ps1) that are run in the caller's environment prior...
ScriptsToProcess = @()
Type files (.ps1xml) to be loaded when importing this module
TypesToProcess = @()
Format files (.ps1xml) to be loaded when importing this module
FormatsToProcess = @()
Modules to import as nested modules of the module specified in ...
NestedModules = @()
Functions to export from this module, for best performance, do not ...
FunctionsToExport = @('Get-TMIIPInfo')
Cmdlets to export from this module, for best performance, do not ...
CmdletsToExport = '*'
Variables to export from this module
VariablesToExport = '*'
Aliases to export from this module, for best performance, do not ...
AliasesToExport = '*'
DSC resources to export from this module
DscResourcesToExport = @()
List of all modules packaged with this module
ModuleList = @()
List of all files packaged with this module
FileList = @()
Private data to pass to the module specified in ...
PrivateData = @{
 PSData = @{
 # Tags applied to this module. These help with module discovery ...
 # Tags = @()
 # A URL to the license for this module.
 # LicenseUri = ''
 # A URL to the main website for this project.
 # ProjectUri = ''
 # A URL to an icon representing this module.
 # IconUri = ''
 # ReleaseNotes of this module
 # ReleaseNotes = ''
 } # End of PSData hashtable
} # End of PrivateData hashtable
HelpInfo URI of this module
HelpInfoURI = ''
Default prefix for commands exported from this module. Override ...
DefaultCommandPrefix = ''
}

163Summary

Summary
In this chapter, we looked into the intricacies of module management in PowerShell,
particularly focusing on the creation and utilization of module manifests. Module mani-
fests, denoted by .psd1 files, offer a structured approach to defining module metadata
and dependencies, enhancing the efficiency and manageability of PowerShell mod-
ules. We explored the key components of a manifest, such as module versioning,
authorship details, dependencies, and exported members. By leveraging manifests,
PowerShell users can streamline module discovery, ensure version compatibility, and
facilitate seamless integration of modules into their workflow. Through practical
examples and insights, we equipped you with the knowledge and tools necessary to
harness the full potential of PowerShell modules within your development and admin-
istration tasks.

Part 3

Welcome to the sophisticated phase of our scripting journey—Grown-Up
Scripting. In this part, we ascend to a higher level of scripting expertise, focusing
on advanced techniques and adopting professional-grade practices that distin-
guish mature scripting endeavors. Chapter 17 initiates a paradigm shift, chal-
lenging conventional thinking and encouraging a mindset aligned with the
demands of complex scripting scenarios. You’ll elevate your scripting skills to a
professional level in chapter 18, uncovering principles and practices that differ-
entiate amateur scripts from those meeting industry standards, ensuring reliabil-
ity, scalability, and maintainability. You’ll then enter the realm of source control
with chapter 19 by gaining a foundational understanding of Git—a powerful ver-
sion control system—and discovering its role in enhancing collaboration and
tracking changes in your scripts. As we delve into the art of refining and perfect-
ing scripts in chapter 20, you’ll learn to meticulously pester your code by testing,
probing, and ensuring its resilience in various scenarios. Security takes center
stage in chapter 21 as you explore the importance of script signing—a crucial
aspect ensuring the integrity and authenticity of your scripts. In conclusion, in
chapter 22, you’ll explore the process of script publication and understand the
steps involved in sharing your scripts with a broader audience. As you progress,
you’ll refine your scripting skills and adopt a mature and professional approach
to script development. Grown-Up Scripting is all about embracing the complexi-
ties of advanced techniques, incorporating industry best practices, and ensuring
your scripts are functional and exemplary. Let’s embark on this journey of script
maturity and elevate our scripting prowess together!

167

Changing your
brain when it comes

to scripting

Let’s pause our ongoing narrative for a moment. In the previous chapters, our pri-
mary focus was creating tools that align with PowerShell’s established conventions
and practices. While this approach has its merits, there are instances where the
most effective way to convey a message is by highlighting its contrast.

NOTE This is our special Bonus Double Chapter; feel free to take your
time as you read through this chapter. It’s essential to grasp the underly-
ing rationale behind our discussion fully. If certain aspects still need clar-
ification, feel free to engage with the community on PowerShell.org and
ask any questions. The concepts explored in this chapter stand as the
core pillars of this book; everything else is essentially a means to imple-
ment and reinforce these foundational ideas. If you intend to progress to
more advanced scripting, as covered in The PowerShell Scripting & Toolmak-
ing Book (https://leanpub.com/powershell-scripting-toolmaking), a solid
understanding of the principles in this chapter is an absolute necessity.

17.1 Example 1
Let’s consider a forum post from PowerShell.org, which we’ve referenced with per-
mission from its original author. The goals were to list the sizes of each user’s home
folder and show any orphan folders—folders that no longer corresponded to an
Active Directory (AD) user. The author posted this code. Note that you need to
install the AD module for this to work.

https://leanpub.com/powershell-scripting-toolmaking

168 CHAPTER 17 Changing your brain when it comes to scripting

$UserNames = Get-ADUser -Filter * -SearchBase `
"OU=NAME_OF_OU_WITH_USERS3,OU=NAME_OF_OU_WITH_USERS2,
OU=NAME_OF_OU_WITH_USERS1,DC=DOMAIN_NAME,DC=COUNTRY_CODE" |
Select -ExpandProperty samaccountname
$UserRegex = ($UserNames | ForEach{[RegEx]::Escape($_)}) -join "|"
$myArray = (Get-ChildItem -Path "\\file2\Felles\Home*" -Directory |
Where{$_.Name -notmatch $UserRegex})
#$myArray
foreach ($mapper in $myArray) {
 #Param ($mapper = $(Throw "no folder name specified"))
 # calculate folder size and recurse as needed
 $size = 0
 Foreach ($file in $(ls $mapper -recurse)){
 If (-not ($file.psiscontainer)) {
 $size += $file.length
 }
 }
 # return the value and go back to caller
 echo $size
}

17.1.1 The critique

Now, this isn’t meant to beat up on the original author. People learn different things
at different times and arrive at their code’s condition through various paths. Let’s take
the code for what it is:

 If asked to solve this problem, we’d write this as two functions, not as one script.
One function would sum up folder sizes, which is a useful function in many sce-
narios. Another would figure out which folders were orphans.

 We’d also take a more PowerShell-native approach, avoiding things such as
echo. Instead, we’d aim to output objects because those could be piped to com-
mands that made them into CSV files, HTML reports, and lots more. On most
systems, echo should be an alias for Write-Output, which means objects will be
written to the pipeline. But using the alias doesn’t make that clear, and some-
one could have used echo as an alias for Write-Host—and then you’d be back
to not having objects in the pipeline.

 We’d probably make more use of native PowerShell commands because they
tend to run a smidge faster than a script.

 To maximize reuse, we’d try to keep our functions as generic and non-context-
specific as possible. This means no hardcoded names or paths.

One thing to remember is that, in Windows, folders don’t have a size. You must get all
the files within that folder instead and add their sizes.

Listing 17.1 Typical PowerShell

16917.1 Example 1

17.1.2 Our take

Here’s our first function. We aren’t going to explain each line in detail. You can (and
should) try the code yourself. Notice that we’re explicitly outputting an empty object
if a folder doesn’t exist.

function Get-FolderSize {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string[]]$Path
)
 BEGIN {}
 PROCESS {
 ForEach ($folder in $path) {
 Write-Verbose "Checking $folder"
 if (Test-Path -Path $folder) {
 Write-Verbose " + Path exists"
 $params = @{'Path'=$folder
 'Recurse'=$true
 'File'=$true}
 $measure = Get-ChildItem @params |
 Measure-Object -Property Length -Sum
 [pscustomobject]@{'Path'=$folder
 'Files'=$measure.count
 'Bytes'=$measure.sum}
 } else {
 Write-Verbose " - Path does not exist"
 [pscustomobject]@{'Path'=$folder
 'Files'=0
 'Bytes'=0}
 } #if folder exists
 } #foreach
 } #PROCESS
 END {}
} #function

The results of our first function look like this:

Path Files Bytes
---- ----- -----
C:\Get-DiskInfo 35 44101
C:\nope 0 0

We could pipe that to Select-Object to turn the Bytes count into another unit, such
as megabytes. Still, we feel it’s important for our tool to output the lowest-level infor-
mation possible to maximize its utility. Notice that we didn’t test this against home
folders per se; we want this to be a generic folder-size-adding-up function. Later, we’ll

Listing 17.2 Get-FolderSize

170 CHAPTER 17 Changing your brain when it comes to scripting

write a controller script to put this function to more specific business use, such as sum-
ming up user home folder sizes.

 Now, we’ll write a second function to deal with orphan folders. This will incorpo-
rate our Get-FolderSize function. We assume this function has already been loaded
into the PowerShell session. This tool is a bit more task-specific because it has to
understand our need to identify orphaned home folders.

function Get-UserHomeFolderInfo {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True)]
 [string]$HomeRootPath
)
 BEGIN {}
 PROCESS {
 Write-Verbose "Enumerating $HomeRootPath"
 $params = @{'Path'=$HomeRootPath
 'Directory'=$True}
 ForEach ($folder in (Get-ChildItem @params)) {
 Write-Verbose "Checking $($folder.name)"
 $params = @{'Identity'=$folder.name
 'ErrorAction'='SilentlyContinue'}
 $user = Get-ADUser @params
 if ($user) {
 Write-Verbose " + User exists"
 $result = Get-FolderSize -Path $folder.fullname
 [pscustomobject]@{'User'=$folder.name
 'Path'=$folder.fullname
 'Files'=$result.files
 'Bytes'=$result.bytes
 'Status'='OK'}
 } else {
 Write-Verbose " - User does not exist"
 [pscustomobject]@{'User'=$folder.name
 'Path'=$folder.fullname
 'Files'=0
 'Bytes'=0
 'Status'="Orphan"}
 } #if User exists
 } #foreach
 } #PROCESS
 END {}
}

Here, we’re taking a root location that contains home folders, going through them
one at a time, and checking to see whether a corresponding AD user exists. If one
doesn’t, we output a blank object with an Orphan Status property. We could easily use
Where-Object to filter for just the orphans so that someone could deal with those. If
the User exists, we use Get-FolderSize to get the size information and output the

Listing 17.3 Get-UserHomeFolderInfo

Loops through
each child folder
in the root

Tests for an AD
user account

Runs our
Get-FolderSize

function

17117.2 Example 2

same object. This time, the object is fully populated with an OK status. Either way, writ-
ing out the same kind of object ensures consistent output and maximizes the reusabil-
ity of the information. This code is in the downloadable samples on GitHub broken
down by chapter (https://github.com/psjamesp/MOL-Scripting).

17.1.3 Thinking beyond the literal

The idea here is to take a given task and break it down. In the original forum post, the
source data was “all users in AD,” which created some challenges regarding finding
orphan folders. In our approach, we use the list of folders as the source data and
check each against AD. That won’t tell us if we have users without home folders, but
that wasn’t a stated problem (and, in most cases, we expect users would bring it up to
the help desk if they didn’t have a home folder).

 We took the one generic portion of the task and wrote it out as its tool: Get-Folder-
Size. We ensured it was helpful on its own, accepting pipeline input and such, even
though that’s not how Get-UserHomeFolderInfo uses it. We incorporated verbose output
that will make each function a bit easier to follow and debug, if necessary. And, because
we’ve used functions, each task is tightly scoped and does just one thing, making each
function less complex, easier to debug, and easier to understand and maintain.

17.2 Example 2
Listing 17.4 is an example of a script that will notify a user via email when their pass-
word is close to expiring. This is a very long script, so we suggest you download it from
GitHub (https://github.com/psjamesp/MOL-Scripting).

 Note that you’ll need to have the Graph PowerShell module installed (Install-
Module Microsoft.Graph) and your application registered in Microsoft Entra ID for
this to work.

<# This script will connect to Azure AD via Microsoft Graph
and notify users if their password is set to expire in the next 7 days.
It will then send them an email.
#>
Connect-MgGraph -ClientId 'YOUR_CLINET_ID' -TenantId 'YOUR_TENANT_ID'

#Domain's password experation in Days
$PasswordValidDay = get-mgdomain -DomainId PowerShell.org |
 select-object -ExpandProperty PasswordNotificationWindowInDays

Check the user's password expiration date
$today = Get-Date
$allUsers = get-mguser -All -Property lastPasswordChangeDateTime,mail |
Where-Object {$_.PasswordPolicies -contains "DisablePasswordExpiration"}

Listing 17.4 PasswordChangeNotification.ps1

Comment help block (but notice it’s not very helpful)

Connects to
Graph API

A few lines of code to
calculate the date

Collects all users into an array

https://github.com/psjamesp/MOL-Scripting
https://github.com/psjamesp/MOL-Scripting

172 CHAPTER 17 Changing your brain when it comes to scripting

foreach ($user in $allUsers) {
 $passwordExpirationDate = $user.LastPasswordChangeDateTime +
[System.TimeSpan]::FromDays($PasswordValidDay)

 # Define the notification threshold (e.g., 7 days before the password
expires)
 $notificationThreshold = 7

 # Calculate the number of days until password expiration
 $daysUntilExpiration = ($passwordExpirationDate - $today).Days

 if ($daysUntilExpiration -le $notificationThreshold) {
 #Send Email using Graph API
 $params = @{
 Message = @{
 Subject = "Your Password is About to Expire"
 Body = @{
 ContentType = 'HTML'Content = "Your password will
expire on
$passwordExpirationDate. Please update your password."
 }
 ToRecipients = @(
 @{
 EmailAddress = @{
 Address = $user.mail
 }
 }
)
 }
 SaveToSentItems = $true
 }
 # Send message
 Send-MgUserMail -UserId $from -BodyParameter $params
 } else {
 Write-Host "Password is not yet expired. Days until expiration
$daysUntilExpiration"
 }

}

17.2.1 The walkthrough

Let’s run through this script in major sections, to get you situated with what’s happening.
We’ll repeat a few lines of code inline so that you don’t have to keep flipping back and
forth. Let’s take a closer look at what each step labeled in the preceding code is doing:

1 This script works well, but it’s not a tool. First, there is very little help to find on
how to use the script.

2 Next, we connect to our Graph API application in Microsoft Entra ID (formerly
Azure AD) giving our Client (Application) ID and our Tenant ID:

Connect-MgGraph -ClientId 'YOUR_CLINET_ID' -TenantId 'YOUR_TENANT_ID'

Loops
through
the array

Gathers all
things needed
to send email

Sends email
via Graph API

17317.2 Example 2

3 Then, there is a line of code to check the date:

$today = Get-Date

4 The next block of code checks what the password expiration policy is set for at
the domain level. Then, we gather all the users in our directory whose password
policy isn’t set to “Never Expires”:

$allUsers = get-mguser -All -Property `
lastPasswordChangeDateTime,mail,passwordProfile | Where-Object
{$_.PasswordPolicies -contains "DisablePasswordExpiration"}

5 The next step in the code is to loop through the array. In the big mess of code,
we’re comparing two dates: today’s date minus the last time a user changed
their password; and if it’s less than our threshold (7 days).

6 Next up is to gather all the information we need to send the user an email that
their password is going to expire soon:

$params = @{
 Message = @{
 Subject = "Your Password is About to Expire"
 Body = @{
 ContentType = 'HTML'
 Content = "Your password will expire on
$passwordExpirationDate. Please update your password."
 }
 ToRecipients = @(
 @{
 EmailAddress = @{
 Address = $user.mail
 }
 }
)
 }
 SaveToSentItems = $true
 }

7 Finally, we send the email suing the Graph API:

Send-MgUserMail -UserId $from -BodyParameter $params

17.2.2 Our take

This is a good example of what we call a monolithic script. It’s doing more than one task
as part of a larger process, but it’s performing all those tasks in a single sequence
rather than the tasks being modularized into tools. This kind of script takes a lot of
work and can be tough to debug because there’s so much going on purely in memory.
What we like to do with toolmaking is create smaller, self-contained tools, each repre-
senting a boundary. Each tool can be written and tested individually, making coding
and debugging much easier.

174 CHAPTER 17 Changing your brain when it comes to scripting

 First, you’ll notice that we broke this down into four different functions. Connect-
MyMgGraph, Get-PasswordExpirationWindow, Check-PasswordExpiration, and Send-
PasswordExpirationNotification. Let’s look at the first function and break it down.
We have two mandatory parameters: the Client ID for the application you made and
the Tenant ID for your Microsoft Entra ID (formally Azure AD) tenant. Then, we use
the command Connect-MgGraph to create the connection to the Graph API:

function Connect-MyMgGraph {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory = $true)]
 [string]$ClientId,
 [Parameter(Mandatory = $true)]
 [string]$TenantId
 [Parameter(Mandatory = $true)]
 [string]$from

)

 # Connect to Microsoft Graph here with the given credentials
 Connect-MgGraph -ClientId $ClientId -TenantId $TenantId -NoWelcome

 Write-Host "Connected to Microsoft Graph"

The next function is Get-PasswordExpirationWindow. This function is small, but
remember, we’re trying to break down our code in reusable pieces. It has a single
mandatory parameter, and this is the Domain ID. Using the Graph API, it looks to see
the organization’s password expiration policy:

function Get-PasswordExpirationWindow {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory = $true)]
 [string]$DomainId
)

 $PasswordValidDay = Get-MgDomain -DomainId $DomainId |
Select-Object -ExpandProperty PasswordNotificationWindowInDays
 return $PasswordValidDay

The next function is Check-PasswordExpiration, which is the bulk of our code. It gath-
ers a list (array) of all users who don’t have a password policy of DisablePassword-
Expiration. Then, we look at the last time the password was set and subtract that from
today’s date. If it’s less than our threshold, we call our last function, Send-Password-
ExpirationNotification, to email the user that their password is about to expire:

function Check-PasswordExpiration {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory = $true)]
 [int]$NotificationThreshold,

17517.2 Example 2

 [Parameter(Mandatory = $true)]
 [string]$DomainId
)

 $today = Get-Date
 $allUsers = Get-MgUser -All -Property lastPasswordChangeDateTime, `
" mail | Where-Object {$_.PasswordPolicies -contains `
" "DisablePasswordExpiration"}

 foreach ($user in $allUsers) {
 $passwordExpirationDate = $user.LastPasswordChangeDateTime
+[System.TimeSpan]::FromDays((Get-PasswordExpirationWindow -DomainId
$DomainId))

 $daysUntilExpiration = ($passwordExpirationDate - $today).Days

 if ($daysUntilExpiration -le $NotificationThreshold) {
 Send-PasswordExpirationNotification -User $user -ExpirationDate
$passwordExpirationDate
 }
 else {
 Write-Host "Password is not yet expired. Days until expiration:
$daysUntilExpiration"
 }
 }
}

Our last function is Send-PasswordExpirationNotification, which uses the Graph
API to send an email letting users know that their password is about to expire:

function Send-PasswordExpirationNotification {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory = $true)]
 [PSCustomObject]$User,
 [Parameter(Mandatory = $true)]
 [datetime]$ExpirationDate
)

 $params = @{
 Message = @{
 Subject = "Your Password is About to Expire"
 Body = @{
 ContentType = 'HTML'
 Content = "Your password will expire on
$ExpirationDate. Please update your password."
 }
 ToRecipients = @(
 @{
 EmailAddress = @{
 Address = $User.mail
 }
 }
)
 }

176 CHAPTER 17 Changing your brain when it comes to scripting

 SaveToSentItems = $true
 }

 # Send the email using the Graph API
 Send-MgUserMail -UserId $from -BodyParameter $params
}

The last two lines of code call our functions. The first calls our Connect-MyMgGraph
function to connect to the Graph API:

Connect-MyMgGraph -ClientId 'YOUR_CLIENT_ID' -TenantId 'YOUR_TENANT_ID'

Finally, we call our Check-PasswordExpiration function, and we send it a threshold
of seven days and our domain name:

Check-PasswordExpiration -NotificationThreshold 7 -DomainID "Your_Domain"

Now, let’s take a look at our revised script in the following listing.

<#
.SYNOPSIS
 Connects to the Microsoft Graph API with the provided client ID and
tenant ID.
.DESCRIPTION
 This function establishes a connection to the Microsoft Graph API using
the provided client ID and tenant ID.
.PARAMETER ClientId
 The client ID for your application.
.PARAMETER TenantId
 The tenant ID associated with your organization.
#>
function Connect-MyMgGraph {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory = $true)]
 [string]$ClientId,
 [Parameter(Mandatory = $true)]
 [string]$TenantId
)

 # Connect to Microsoft Graph here with the given credentials
 Connect-MgGraph -ClientId $ClientId -TenantId $TenantId -NoWelcome

 Write-Host "Connected to Microsoft Graph"
}

<#
.SYNOPSIS
 Retrieves the password expiration window for a specific domain.
.DESCRIPTION

Listing 17.5 Revised password expiration code

17717.2 Example 2

 This function retrieves the password expiration window (in days) for a
specified domain.
.PARAMETER DomainId
 The ID of the domain for which you want to get the password expiration
window.
#>
function Get-PasswordExpirationWindow {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory = $true)]
 [string]$DomainId
)

 $PasswordValidDay = Get-MgDomain -DomainId $DomainId |
Select-Object -ExpandProperty PasswordNotificationWindowInDays
 return $PasswordValidDay
}

<#
.SYNOPSIS
 Checks and notifies users of password expiration.
.DESCRIPTION
 This function checks the password expiration for all users and sends
notifications to those whose passwords are about to expire.
.PARAMETER NotificationThreshold
 The number of days before password expiration to send notifications.
#>
function Check-PasswordExpiration {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory = $true)]
 [int]$NotificationThreshold,
 [Parameter(Mandatory = $true)]
 [string]$DomainId
)

 $today = Get-Date
 $allUsers = Get-MgUser -All -Property lastPasswordChangeDateTime, mail
| Where-Object {$_.PasswordPolicies -contains "DisablePasswordExpiration"}

 foreach ($user in $allUsers) {
 $passwordExpirationDate = $user.LastPasswordChangeDateTime +
[System.TimeSpan]::FromDays((Get-PasswordExpirationWindow -DomainId
$DomainId))

 $daysUntilExpiration = ($passwordExpirationDate - $today).Days

 if ($daysUntilExpiration -le $NotificationThreshold) {
 Send-PasswordExpirationNotification -User $user -ExpirationDate
$passwordExpirationDate
 }
 else {
 Write-Host "Password is not yet expired. Days until expiration:
$daysUntilExpiration"
 }

178 CHAPTER 17 Changing your brain when it comes to scripting

 }
}

<#
.SYNOPSIS
 Sends a password expiration notification email to a user.
.DESCRIPTION
 This function sends an email notification to a user whose password is
about to expire.
.PARAMETER User
 The user object for whom the notification is intended.
.PARAMETER ExpirationDate
 The date on which the user's password will expire.
#>
function Send-PasswordExpirationNotification {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory = $true)]
 [PSCustomObject]$User,
 [Parameter(Mandatory = $true)]
 [datetime]$ExpirationDate
)

 $params = @{
 Message = @{
 Subject = "Your Password is About to Expire"
 Body = @{
 ContentType = 'HTML'
 Content = "Your password will expire on
$ExpirationDate. Please update your password."
 }
 ToRecipients = @(
 @{
 EmailAddress = @{
 Address = $User.mail
 }
 }
)
 }
 SaveToSentItems = $true
 }

 # Send the email using the Graph API
 Send-MgUserMail -UserId $from -BodyParameter $params
}

Connect-MyMgGraph -ClientId 'YOUR_CLIENT_ID' -TenantId 'YOUR_TENANT_ID'
Check-PasswordExpiration -NotificationThreshold 7 -DomainID "Your_Domain"

WARNING This exercise was mainly about how we’d reorganize things. We
haven’t tested this extensively, and we’ve omitted a few things from the orig-
inal script due to space considerations in the book. If you decide to finish
this, do so with our blessing, and please share your results with the original
script’s author!

17917.3 Your turn

17.3 Your turn
Let’s engage your brain in a “change it to the right way” exercise.

17.3.1 Start here

Consider this example (with apologies for the line-wrapping—it’s unavoidable and
part of the problem we want to illustrate).

foreach ($domain in (Get-ADForest).domains) {
 Get-ADDomainController -filter * -server $domain |
 sort hostname |
 foreach {
 Get-CimInstance -ClassName Win32_ComputerSystem -ComputerName
" $psitem.Hostname |
 select @{name="DomainController";Expression={$_.PSComputerName}},
" Manufacturer, Model,@{Name="TotalPhysicalMemory(GB)"
" ;Expression={ "{0:N0}"
-f ($_.TotalPhysicalMemory / 1Gb) }}
 }
}

This isn’t bad code by any stretch, but it’s limited. Let’s say that you wanted its output
on the screen one day—done! It’ll work fine. But tomorrow, you want the output in a
CSV file. Oh, and the day after, your boss wants it in an HTML report. What would you
change to enable all of those scenarios?

17.3.2 Your task

Rewrite the code to conform to native PowerShell patterns and practices we’ve dis-
cussed. You don’t need to get fancy and add error handling or anything, although
you’re free to do so if you want.

17.3.3 Our take

Here’s how we approached this.

function Get-DiskInfo {
 foreach ($domain in (Get-ADForest).domains) {
 $hosts = Get-ADDomainController -filter * -server $domain |
 Sort-Object -Prop hostname
 ForEach ($h in $hosts) {
 $cs = Get-CimInstance -ClassName Win32_ComputerSystem -ComputerName $h
 $props = @{'ComputerName' = $h
 'DomainController' = $h
 'Manufacturer' = $cs.manufacturer
 'Model' = $cs.model
 'TotalPhysicalMemory(GB)'=$cs.totalphysicalmemory / 1GB}
 New-Object -Type PSObject -Prop $props

Listing 17.6 Start here

Listing 17.7 Our solution

180 CHAPTER 17 Changing your brain when it comes to scripting

 } #foreach $h
 } #foreach $domain
} #function

Here are some notes to consider:

 We switched to the ForEach scripting construct because it tends to run a little
faster, and we find it easier to read.

 Rather than using Select-Object, we manually constructed an object. We find
this easier to read.

 We added both a DomainController property and a ComputerName property. The
original code produced DomainController, but we always like to have Computer-
Name because it lines up better in the pipeline with -ComputerName parameters.

 Most important, we encased the code in a function. This makes it easier to pipe
the output to Export-CSV, ConvertTo-HTML, and so on.

Our solution isn’t perfect because it’s still doing two things: getting computer accounts
from AD and disk information. We might write a tool to get domain computer accounts
in a proper production environment, perhaps based on some criteria. Then, we’d mod-
ify this function to handle only the disk information. If we planned the properties and
parameters right, we could use these hypothetical commands like this:

Get-CompanyServers | Get-DiskInfo
Get-CompanyServers | Get-DiskInfo | Convertto-html -title "DiskInfo Report"

We’ll leave it to you to play with this further.

Summary
In this chapter, we embarked on a journey of shifting our mindset toward scripting,
embracing advanced techniques and adopting professional-grade practices. We chal-
lenged conventional thinking and encouraged a mature approach to scripting.

 Throughout this part of the journey, we’ll emphasize embracing complexity, incor-
porating industry best practices, and striving for functional and exemplary scripts. By
adopting a mature and professional approach to script development, we aim to ele-
vate our scripting prowess together.

181

Professional-grade
scripting

We’re almost ready to call you a professional toolmaker in PowerShell—almost.
Before you go around adding “PowerShell Toolmaker” to your résumé, we think
you should make certain that you’re exhibiting the behaviors and patterns of a true
PowerShell pro. With that in mind, this chapter provides essential guidelines and a
list of best practices to follow to be recognized as a reliable and skilled professional
in the PowerShell world.

18.1 Using source control
One hallmark of professional PowerShell scripters is their commitment to ensuring
the longevity and maintainability of their code. Source control, discussed in detail
in chapter 19, is pivotal in achieving these goals. While some might liken source
control to filing taxes, modern tools have greatly streamlined its usage. Integrated
seamlessly with platforms such as Visual Studio Code (VS Code), source control is
as easy as saving a file and committing changes with a simple keystroke.

 Recognize that source control isn’t just a chore but a mark of professionalism.
Employing source control on your projects offers numerous benefits:

 Team collaboration—In team settings, source control helps prevent conflicts by
tracking who makes changes and preventing accidental overwrites.

 Version history—Revisit previous iterations of your code to correct mistakes or
reference past approaches.

 Backup and recovery—Source control repositories often become part of an
organization’s backup strategy, ensuring the safety of your codebase.

182 CHAPTER 18 Professional-grade scripting

 Code sharing—Easily share code with others while maintaining control over con-
tributions, which is essential for community-based projects.

 Issue management—Leading systems such as Team Foundation Server (TFS),
Azure DevOps, and GitHub provide tools to track and discuss problems, and
release updates.

Remember, using source control elevates your professional image in the eyes of IT
managers and your colleagues.

18.2 Code clarity
In the console, shortcuts can save time, but in scripts, readability matters. Avoid using
aliases and abbreviated parameter names. We watch PowerShell inventor Jeffrey
Snover do demonstrations, and it’s all icm { ps } –com cl2 and stuff, and it looks amaz-
ing—and mysterious. Someone must stand with him during demos and explain what
he typed. Spell out command and parameter names fully, and embrace tab comple-
tion. By doing so, you enhance the readability of your script and minimize typos. Fol-
low this practice right from the start, as it aligns with professional coding.

 Again, if it’s at the console and just for you, fine—type what you remember and
save time. We all do it. But a script is a permanent artifact to be shared with others and
checked into source control. It needs to be more readable. Spell out every command
name, spell out every parameter name, and use parameter names rather than relying
on positional values. Your script will be vastly easier for someone else to read—and, as
my coauthor Don Jones often says, in a few months, you’ll be that “someone else,” and
Future You will appreciate the effort that Past You put into spelling everything out.

 It doesn’t even need to take much effort. Are you in front of a computer? Look at the
Tab key. It’s huge, right? It’s almost the size of the Shift key and twice that of any letter
key. It’s like it wants to be pressed. In PowerShell, tab completion is key to spelling things
out with less effort. You’ll get everything spelled out and reduce your bug count because
the computer won’t ever make a typo for a command or parameter name. Double win!

NOTE We’re not the only ones who make a big deal about this point. If
you’re using VS Code, you’ll be bombarded with red squiggly indicators that
something is wrong. That’s because the PowerShell extension in VS Code
relies on the PowerShell Script Analyzer (PSScriptAnalyzer) tool, which
includes rule-checking for aliases. It probably won’t detect if you use a posi-
tional parameter, but it will recognize if you use gsv instead of Get-Service.
So, write your code the right way from the beginning.

18.3 Effective comments
Comments are essential for clarity, but don’t overdo it. Provide high-level explana-
tions for complex sections of your script. Inline comments shouldn’t merely restate
the obvious. Use verbose statements or inline comments to guide readers through

18318.4 Formatting your code

your code’s logic. Remember, these comments are your way of communicating your
thoughts to others. We don’t mean this:

Query Win32_ComputerSystem object from WMI
Get-WMIObject –Class Win32_ComputerSystem

Gosh, is that what Get-WmiObject does? Wow. No, we’re not saying you need a line-by-
line, blow-by-blow accounting of what your code does, but provide some broad strokes.
Here’s an example:

see if –NewUser was specified and modify arguments
We use StartPassword either way
If ($PSBoundParameters.ContainsKey('NewUser')) {
 $args = @{'StartName'=$NewUser
 'StartPassword'=$NewPassword}
} Else {
 $args = @{'StartPassword'=$NewPassword}
 Write-Warning "Not setting a new user name"
}

Here, we’ve used a comment to provide a high-level description of what’s happening
and why. Comments document what you were thinking more than anything else, and
that’s useful to someone else—and again, that “someone else” will be you a few months
from now.

 We’re also broadly okay with using verbose statements instead of some inline com-
ments, for example:

Write-Verbose "Closing connection to $computer"
$session | Remove-CimSession

Removing a CimSession is evident from the command name, so this doesn’t warrant
an inline comment. But the verbose statement does help document the progression of
the script, and here it does so in a way that the verbose output benefits someone using
the script and someone reading it.

NOTE So, um, where are this book’s inline comments? We’ve omitted a lot of
them because we want to reduce the amount of space we’re taking up and to
help you focus on the commands. The examples we use in the book aren’t,
from a practices-and-patterns perspective, the same code we’d deploy in a
production environment.

18.4 Formatting your code
There is zero excuse for mangled-looking code. Unfortunately, listing 18.1 is an all-too-
realistic example of what people often post in online forums. Given the line-wrapping
in this book, you probably can’t read it, but look at the downloadable sample code
file, and you’ll find it hard to read.

184 CHAPTER 18 Professional-grade scripting

function Set-TMServiceLogon {
[CmdletBinding()]
Param(
[Parameter(Mandatory=$True,ValueFromPipelineByPropertyName=$True)]
[string]ServiceName[Parameter(Mandatory=$True,ValueFromPipeline=$True,
ValueFromPipelineByPropertyName=$True)][string[]]$ComputerName,
[Parameter(ValueFromPipelineByPropertyName=$True)]
[string]$NewPassword,[Parameter(ValueFromPipelineByPropertyName=$True)]
[string]$NewUser,
[string]$ErrorLogFilePath
)
BEGIN{}
PROCESS{
 ForEach ($computer in $ComputerName) {
 Do {
 Write-Verbose "Connect to $computer on WS-MAN"
 $protocol = "Wsman"
 Try
{
 $option = New-CimSessionOption -Protocol $protocol
 $session = New-CimSession -SessionOption $option
– ComputerName $Computer -ErrorAction Stop
 If ($PSBoundParameters.ContainsKey('NewUser'))
{
 $args = @{'StartName'=$NewUser
 'StartPassword'=$NewPassword}
 }
Else {
 $args = @{'StartPassword'=$NewPassword}
 Write-Warning "Not setting a new user name"
 }
 Write-Verbose "Setting $servicename on $computer"
 $params = @{'CimSession'=$session
 'MethodName'='Change'
 'Query'="SELECT * FROM Win32_Service WHERE Name = '$ServiceName'"
 'Arguments'=$args}
 $ret = Invoke-CimMethod @params
 switch ($ret.ReturnValue) {
 0 { $status = "Success" }
 22 { $status = "Invalid Account" }
 Default { $status = "Failed: $($ret.ReturnValue)" }
 }
 $props = @{'ComputerName'=$computer;'Status'=$status}
 $obj = New-Object -TypeName PSObject -Property $props
 Write-Output $obj
 Write-Verbose "Closing connection to $computer"
 $session | Remove-CimSession
 } Catch {
 # change protocol - if we've tried both
 # and logging was specified, log the computer
 Switch ($protocol) {
 'Wsman' { $protocol = 'Dcom' }
 'Dcom' {

Listing 18.1 Code that is not formatted

18518.4 Formatting your code

 $protocol = 'Stop'
 If
($PSBoundParameters.ContainsKey('ErrorLogFilePath')) {
Write-Warning "$computer failed; logged to
$ErrorLogFilePath"
 $computer | Out-File $ErrorLogFilePath -Append
 } }
 }
}
 } Until ($protocol -eq 'Stop')
 } }
END{}
}

Go ahead—make sense of that. We dare you. Contrast that to the next listing, which is
the same code, doing the same thing.

function Set-TMServiceLogon {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string]$ServiceName,
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string[]]$ComputerName,
 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewPassword,
 [Parameter(ValueFromPipelineByPropertyName=$True)]
 [string]$NewUser,
 [string]$ErrorLogFilePath
)
BEGIN{}

PROCESS{
 ForEach ($computer in $ComputerName) {
 Do {
 Write-Verbose "Connect to $computer on WS-MAN"
 $protocol = "Wsman"
 Try {
 $option = New-CimSessionOption -Protocol $protocol
 $session = New-CimSession -SessionOption $option
–ComputerName $Computer -ErrorAction Stop
 If ($PSBoundParameters.ContainsKey('NewUser')) {
 $args = @{'StartName'= $NewUser
 'StartPassword' = $NewPassword}
 } Else {
 $args = @{'StartPassword' = $NewPassword}
 Write-Warning "Not setting a new user name"
 }

Listing 18.2 Code that is formatted

Spacing for
readability

Neatly
structured
hash tables

186 CHAPTER 18 Professional-grade scripting

 Write-Verbose "Setting $servicename on $computer"
 $params = @{'CimSession'=$session
 'MethodName'='Change'
 'Query'="SELECT * FROM Win32_Service WHERE Name
= '$ServiceName'"
 'Arguments'=$args}
 $ret = Invoke-CimMethod @params
 switch ($ret.ReturnValue) {
 0 { $status = "Success" }
 22 { $status = "Invalid Account" }
 Default { $status = "Failed: $($ret.ReturnValue)" }
 }
 $props = @{'ComputerName'=$computer
 'Status'=$status}
 $obj = New-Object -TypeName PSObject -Property $props
 Write-Output $obj
 Write-Verbose "Closing connection to $computer"
 $session | Remove-CimSession
 } Catch {
 # change protocol - if we've tried both
 # and logging was specified, log the computer
 Switch ($protocol) {
 'Wsman' { $protocol = 'Dcom' }
 'Dcom' {
 $protocol = 'Stop'
 If
($PSBoundParameters.ContainsKey('ErrorLogFilePath')) {
Write-Warning "$computer failed; logged to
$ErrorLogFilePath"
 $computer | Out-File $ErrorLogFilePath -Append
 } # if logging
 }
 } #switch
 } # try/catch
 } Until ($protocol -eq 'Stop')
 } #foreach
} #PROCESS
END{}
} #function

Outside of this book—where, admittedly, the longer lines still get a little janky—this
code is a pleasure to read. You can see where each block of code begins and ends.
Look specifically for these things:

 When we close a construct with }, we add a comment indicating what it closes.
 We use blank lines to separate chunks of code to see specific functional units

more efficiently.
 We indent four spaces inside each construct.
 Hash tables are constructed with one key-value pair per line, all left-aligned to

the same point.

Comments for
closing braces

18718.7 Logic over complexity

If you’re using VS Code (which, again, we suggest you do), it offers a quick-and-easy
reformat option that will take care of all of this for you! It even tries to format as you
type to avoid messiness in the first place. That’s the value of a good editor—which
costs you zero in the case of VS Code.

TIP Open the command palette in VS Code, and type Format Document.
Click this, and it will auto-format your document based on best practices. You
also can add this line to your settings.json file to enable autoformat on save:
"editor.formatOnSave": true.

18.5 Meaningful variable names
Choose meaningful and descriptive variable names. Avoid Hungarian notation or con-
cise variable names. The clarity in variable names enhances code comprehension and
maintainability. Yes, sometimes in this book, we’ve used $c or $s, but that’s to save hor-
izontal space on the page. A variable that contains a bunch of disk drive objects should
be called something like $drives (plural helps remind you that it’s a collection, not a
single object). A username should be in $username, not $un. The only exception is
that variables used to declare parameters should follow parameter-naming conven-
tions, which call for singular nouns: $ComputerName, not $ComputerNames.

 In addition, avoid the Hungarian notation style of variable naming that came with
VBScript back in the 1990s. Yes, the ’90s. Think about that before you create variables
called $strComputer and $intCounter. Those were needed in VBScript because it was
a weakly typed, non-object-oriented language; PowerShell has stronger typing and is
object oriented. A string is an object of the type System.String; there’s no need to
add str to the variable name to remind you of that. Under PowerShell, everything
would technically be $obj anyway, so the Hungarian style is meaningless and makes
you look out of touch with current trends.

18.6 Avoiding aliases
While aliases save time in the console, steer clear of them in scripts. Ambiguous aliases
can lead to confusion. Instead, use full command names for better readability and
understanding. Exceptions are limited to commonly recognized aliases such as
'Where' instead of 'Where-Object'. ForEach is less fine because it’s easy to confuse it
with the language construct ForEach; use ForEach-Object if you mean to use the com-
mand. Avoid hard-to-interpret aliases such as icm and gwmi; spell out the command
names, and forget aliases entirely in a script.

18.7 Logic over complexity
Maintain logical structure in your scripts. Avoid nesting complex expressions and
using awkward pipelines. Your script’s goal is to be a structured, permanent artifact,
not a one-liner puzzle. Prioritize readability over cleverness. Here’s an example:

188 CHAPTER 18 Professional-grade scripting

Gwmi Win32_operatingsystem | select *,@{n='RAM';e={gwmi
 win32_computersystem | select –exp totalphysicalmemory} | % { $_ |
 Out-File temp.txt –Append ; $_.Reboot() }

Please don’t run this unless you’re feeling brave, but look at how difficult it is to read
and follow, with its nested expressions, semicolon-delimited commands, and so on.
Again—this is fine for the command line as an ad hoc, one-off thing, but not for a script.

 We don’t automatically avoid all pipeline use in a script; it’s one of PowerShell’s
more powerful features. We’d go about it differently:

$os = Get-WmiObject –Class Win32_OperatingSystem
$cs = Get-WmiObject –Class Win32_ComputerSystem
$os | Add-Member –MemberType NoteProperty –Name RAM –Value `
 $cs.TotalPhysicalMemory
$os | Out-File temp.txt –Append
$os.Reboot()

Again, we don’t recommend running that unless you’re brave, but you can see that it’s
easier to follow. Each line does one thing, building on the previous lines. This isn’t the
only correct restructure of the original awkward example; there are a dozen ways you
could do this, have it accomplish the same thing in the same amount of time, and be
more structured and easier to read. The most clever one-liners in PowerShell are
often the hardest to unpack and make sense of—don’t subject your scripts to that
extra mental overhead.

18.8 Providing help
We get it; documenting is boring. Do it anyway. Do you know how upset you get every
time you try to look for the help for a command, and it’s either anemic or missing?
Yeah. Don’t be that coder.

 Go one better and learn how to use PlatyPS, an open source project used by the
PowerShell team to generate external (i.e., not comment-based) help.

18.9 Avoiding Write-Host and Read-Host
This problem has gotten more confusing as PowerShell has evolved, but the basic maxim
still stands: bad things happen every time you use Write-Host for output. The moral is
that the –Host commands are designed to interact with human eyeballs and fingers. In
other words, they tie your command to a specific context—human interaction—which is
what tools are supposed to avoid. There are, of course, exceptions.

 First, if you’re writing a controller script that aims to engage tools in a human-
interactive context, then the –Host commands are obviously fine. They’re also fine if
you’re writing a tool that uses the verb Show, one of the official PowerShell verbs. That
verb—which you might use in a command like Show-Menu—implies human interac-
tion and so, again, implies a specific context.

18918.12 Being flexible

 Second, in PowerShell v5 and later, Write-Host in particular, becomes a sort of
shortcut to the Write-Information channel, alleviating nearly all the context-tying
concerns that used to go along with Write-Host. We still don’t think Write-Host is a
good idea; if you mean to use the Information stream, use Write-Information. Using
Write-Host makes it clear that you don’t know Write-Information exists, and you’re
using Write-Host for all the wrong reasons.

NOTE The other counterargument we always get is, “But I need Write-
Host to show the user what’s happening!” On one hand, this is a valid con-
cern. If you have a script or tool that requires some processing time or is
running through a complex process, it can be useful to provide feedback.
But in that case, take the time to learn how to use the Write-Progress
cmdlet instead of Write-Host.

18.10 Sticking with single quotes
In PowerShell, we prefer single quotes for string delimiters unless you require variable
or subexpression interpolation such as

$message = "The computer name is $ComputerName"

or subexpressions such as

$message = "Yesterday was $((Get-Date).AddDays(-1))"

Single quotes provide clarity and prevent unintended variable expansion. If you’re
not used to using single quotes as string delimiters, this takes some habit-breaking
(we can’t guarantee that we’ve followed this rule throughout the book), but it’s
worth the effort.

18.11 Not polluting the global scope
Do not jam your own variables into the global scope. It’s a horrible practice, it makes
debugging scripts vastly more difficult, and, in several situations, it can result in unre-
liable and inconsistent script execution (as with a host that manages the global scope
differently). Modules are free to export variables, which will end up in the global
scope, but which PowerShell can manage as part of the module lifecycle. Nothing else
should be dumped into the global scope.

18.12 Being flexible
We hope it goes without saying, but we will anyway: avoid hardcoding values and refer-
ences. Don’t create a function with a hardcoded value for your Exchange server in
your code. Instead, create a nonmandatory parameter, and set a default value. This
way, you can easily run your function with the default values, but in the rare situation
where you need to specify a different server, you’ll also be able to handle that. Don’t
write a command that looks like this:

190 CHAPTER 18 Professional-grade scripting

Function Get-ServerStuff {
$server = 'SRV01'
...
}

Sure, you may think you’ll never need to specify a different value, but that might
change tomorrow. Pros write tools with flexibility in mind:

Function Get-ServerStuff {
Param ([string]$ComputerName = 'SRV01')
...
}

You have to plan not only for how a user might run your tool today but also for how
the tool might change in the future.

18.13 Prioritizing security
Never hardcode credentials into your script. Use the [pscredential] object as a
parameter for secure credential handling. Maintain security while providing flexibility
for different usage scenarios:

Function Get-Diskspace {
[cmdletbinding()]
Param([string]$ComputerName,[pscredential]$Credential)
$PSBoundParameters.Add("classname","win32_logicaldisk")
$PSBoundParameters.Add("filter","drivetype=3")
Get-WmiObject @PSBoundParameters |
Select PSComputerName,DeviceID,Size,Freespace
}

The user of this function can run it like this:

Get-diskspace -ComputerName SRV01 -credential company\administrator

They will be prompted for a password or pass a credential object:

$cred = get-credential company\administrator
Get-diskspace -ComputerName SRV01 -credential $cred

Writing code that uses the pscredential object maintains security and flexibility.

18.14 Striving for elegance
Strive for elegance in your code. Simplify your scripts by avoiding code repetition. Use
techniques such as hash table splatting to create cleaner, more readable code. Over
time, aim to develop an elegant coding style. As you develop tools, hopefully following
the suggestions in this book, try to achieve a level of simplicity or elegance. We think
elegant scripts are easier to read and debug, and they often perform better. One con-
cept that can help is to avoid repeating code.

19118.14 Striving for elegance

 Let’s say you’re creating code to get system information from Windows Manage-
ment Instrumentation (WMI) using Get-CimInstance based on a variable value. Your
initial stab might look like this:

Switch ($value) {
"OS" {
 $data = Get-Ciminstance -class win32_operatingsystem
-ComputerName $ComputerName | Select PSComputerName,Version,Caption
}
"CS" {
 $data = Get-Ciminstance -class win32_computersystem
-ComputerName $ComputerName | Select PSComputerName,Model,Manufacturer
}
"CPU" {
 $data = Get-Ciminstance -class win32_processor
-ComputerName $ComputerName | Select PSComputerName,CPUID,Name,MaxClockSpeed
}
"Memory" {
 $data = Get-Ciminstance -class win32_physicalmemory
-ComputerName $ComputerName | SelectPSComputerName,Banklabel,Capacity,Speed
}
}

This will work fine, but there’s a lot of cumbersome copying, pasting, and editing of
code. Contrast that with this example:

$ComputerName = 'localhost'
$value = "OS"

$cimparams=@{ComputerName=$ComputerName}
$props = @('PSComputerName')
Switch ($value) {
'OS' {
 $cimparams.Add('classname','win32_operatingsystem')
 $props+='Version','Caption'
}
'CS' {
 $cimparams.Add('classname','win32_computersystem')
 $props+='Model','Manufacturer'
}
'CPU' {
 $cimparams.Add('classname','win32_processor')
 $props+='CPUID','Name','MaxClockSpeed'
}
'Memory' {
 $cimparams.Add('classname','win32_physicalmemory')
 $props+='Banklabel','Capacity','Speed'
}
}
$data = Get-CimInstance @cimparams | Select-object -Property $props

Notice the use of a hash table with parameters for Get-CimInstance, which we end up
splatting. This is a great technique for simplifying your code. Granted, you need to

Uses a hash table
with parameters
for splatting

Modifies the
parameters
on the fly

Runs
Get-CimInstance once

192 CHAPTER 18 Professional-grade scripting

know about hash tables, splatting, and arrays, but this example feels easier to read and
not as heavy handed.

 We provide a lot of techniques in this book. You’ll have to develop them into an
art. Elegant code will come to you over time, as you gain experience and mastery.
Picasso’s line drawings convey a great deal, with what appears to have been minimal
effort, but it took him years to achieve the level of mastery to make that possible.
You may be writing your code in crayons today, but, eventually, we want you to create
elegant masterpieces.

Summary
As you progress on your journey to becoming a professional PowerShell scripter,
remember that by adopting these professional scripting practices, you’ll elevate your
PowerShell skills to the next level. These practices make your code more reliable and
maintainable, and they help you establish yourself as a respected professional in the
PowerShell community.

193

An introduction
to source control

with Git

One sign of a professional toolmaker is their use of source control. How many of you
have a folder on your C: drive in which you keep all of your scripts? Or maybe you
have a network drive at your work with all the IT scripts? Because we’re in automation
and DevOps, properly maintaining our PowerShell projects is critical. For many orga-
nizations today, this task falls to Git, a source control system first made famous on
Linux (it was invented by Linux’s inventor, Linus Torvalds). We thought it would be
helpful to provide a crash course on Git fundamentals so that you can begin incorpo-
rating it into your work. As you might expect, this is a significant topic; you’ll need to
devote time to learning more than the basics. You may want to look at Learn Git in a
Month of Lunches by Rick Umali (Manning, 2015, http://mng.bz/mj7P).

19.1 Why source control?
Source control is a means of keeping track of what changes have been made to a
file, often including a change log or documentation that indicates who made a
change and why. Source control also makes knowing the latest or more authorita-
tive version easier. Some systems require you to check out a file to work on it. When
you’re finished, you can check it in, often with a comment about what you modi-
fied and why. While the file is checked out, only you can work with it, which may be
fine for smaller teams.

 Your organization probably already has a solution for the dev team to use for
source control, whether it’s Microsoft Team Foundation Services (TFS), GitHub,
GitLab, or one of the other dozen source control solutions. Go ahead and use what
the rest of your company is using. The last thing you need is yet another source
control program to maintain.

http://mng.bz/mj7P

194 CHAPTER 19 An introduction to source control with Git

19.2 What is Git?
Many traditional source control systems are centralized. Often, there’s a centralized
server or database with tightly controlled access. As you can imagine, these types of
systems have a fair amount of overhead. Git, on the other hand, was developed as a
decentralized source control system. It was developed in the Linux world to help man-
age source code for the Linux kernel, so it’s pretty robust. In the Git paradigm, every-
one has their own copies of source files that can be periodically merged and updated.

 Git is primarily a command-line tool with only a handful of basic commands you
need to get started. As you explore the Git ecosystem, you’ll find several graphical
frontends and even some PowerShell modules that are essentially wrappers to the Git
command. We recommend that you stick with the traditional Git command-line tools.
Once you’ve built up some mastery, feel free to get some GUI tools if that makes you
feel better. We also recommend learning from the command line because a wealth of
online information almost always uses the command line.

 The main reason to use Git is that once you get used to it, it’s dead easy. A ton of
tools are available to make it even easier. And, because of the way it’s built, Git lends
itself very well to highly distributed source control. That means you can keep local
copies of files to work on, but keep the main copies on a protected server, on a web-
based source control service such as GitHub.com, and so on. There are even Git tools
available for mobile devices running iOS and Android so that you can take your work
with you. Perhaps most importantly, Git has become massively popular in the Power-
Shell world, meaning many, many, many community projects—including the source
code and documentation for PowerShell Core itself—are hosted in Git (specifically, in
the web-based GitHub.com service). Becoming familiar with Git will not only help you
with your own projects but also help you contribute to community projects and Power-
Shell. If you create your own community projects, hosting them someplace like
GitHub will make it easier to recruit other contributors.

19.2.1 Installing Git

To get started, go to https://git-scm.com/downloads, and download the latest Win-
dows client. Run the setup—you should be able to accept all the defaults. The setup
will create an option to launch Git in a Linux-like terminal window, or you can use the
traditional Windows console and PowerShell. That’s what we usually use.

19.2.2 Git basics

After the installation is complete, open a PowerShell window. If you had a session
open when you installed it, you must restart it to detect the change to your path vari-
able. At a prompt, type the git command to get general usage help:

PS C:\> git
usage: git [--version] [--help] [-C <path>] [-c name=value]
 [--exec-path[=<path>]] [--html-path] [--man-path] [--info-path]
 [-p | --paginate | --no-pager] [--no-replace-objects] [--bare]

https://git-scm.com/downloads

19519.3 Repository basics

 [--git-dir=<path>] [--work-tree=<path>] [--namespace=<name>]
 <command> [<args>]
...

As we go through the basics, we encourage you go to back and look at more detailed
command help. In addition, run git help tutorial to open an HTML documenta-
tion page. (You should be able to use your web browser.) On that page, you’ll also see
a link to a user manual that’s worth your time.

 We’ll use Git as a local source control system with you as the primary user. You’ll
need to configure a username and email information:

git config --global user.email "James@globomantics.com"
git config --global user.name "James Petty"

Later, we’ll get you started on integrating with GitHub so that you can collaborate with
others. If you have GitHub credentials, use them here.

19.3 Repository basics
The first thing you need to do is initialize a Git repository. This step essentially tells Git
to watch this folder. This can be your module’s root directory for your scripting proj-
ects. For Git demo purposes, we created a new folder called MyPSTool and changed to
that folder:

PS C:\> mkdir MyPSTool
 Directory: C:\
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 6/14/2023 3:20 PM MyPSTool
PS C:\> cd .\MyPSTool
PS C:\MyPSTool>

When you run a Git command, you need to be in the repository. We tend to run Git
commands from the root.

19.3.1 Creating a repository

We want this folder to be managed by Git, so we initialize it as a repository:

PS C:\MyPSTool> git init
Initialized empty Git repository in C:/MyPSTool/.git/
PS C:\MyPSTool> Get-ChildItem -Hidden
 Directory: C:\MyPSTool
Mode LastWriteTime Length Name
---- ------------- ------ ----
d--h-- 6/14/2023 3:26 PM .git

This process creates a hidden directory; we shouldn’t ever need to access it or modify
anything in it directly. The initialization process also creates the main branch. Later,
we’ll be able to create additional branches:

196 CHAPTER 19 An introduction to source control with Git

PS C:\MyPSTool> git status
On branch main
Initial commit
nothing to commit (create/copy files and use "git add" to track)
PS C:\MyPSTool>

We’ll go ahead and create a few new files and then recheck the status:

PS C:\MyPSTool> git status
On branch main
Initial commit
Untracked files:
 (use "git add <file>..." to include in what will be committed)
 file1.ps1
 file2.ps1
nothing added to commit but untracked files present (use "git add" to
track)

Git maintains several virtual areas for tracking your work. As you can see, Git tells us
we have untracked files. This means they aren’t part of the source control system. Let’s
take care of that oversight.

19.3.2 Staging a change

The first step is to stage the changes by adding the files. We can either add individual
files or stage all of them:

PS C:\MyPSTool> git add .

Let’s check the status now:

PS C:\MyPSTool> git status
On branch main
Initial commit
Changes to be committed:
 (use "git rm --cached <file>..." to unstage)
 new file: file1.ps1
 new file: file2.ps1

The files are staged and ready to be committed to the repository. If we modify a staged
file, we’ll need to re-add it:

PS C:\MyPSTool> git status
On branch main
Initial commit
Changes to be committed:
 (use "git rm --cached <file>..." to unstage)
 new file: file1.ps1
 new file: file2.ps1
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

19719.3 Repository basics

 modified: file2.ps1
PS C:\MyPSTool> git add .\file2.ps1

Next, let’s commit the changes.

19.3.3 Committing a change

Committing a change makes it possible to roll back to a given state or undo changes.
If it helps, you can think of your git commits as checkpoints, although they’re more
than that. Now we commit the files, including a message comment:

PS C:\MyPSTool> git commit -m 'added basic commands'
[main (root-commit) 038b8f9] added basic commands
 2 files changed, 1 insertion(+)
 create mode 100644 file1.ps1
 create mode 100644 file2.ps1
PS C:\MyPSTool>

You have to enter a commit message; it can be as long as needed. We’ve been known
to create a here-string:

PS C:\MyPSTool> $m=@"
>> this is a sample longer
>> commit message that can
>> cover more than one line.
>> "@
>>
PS C:\MyPSTool> git commit -m $m.

NOTE See “Using Windows PowerShell ‘Here-Strings’” for more about using
here-strings (TechNet, http://mng.bz/9r4E).

We won’t notice any changes to files in the directory—everything is tracked in the hid-
den .git directory. But we can use Git’s log feature to review what has happened:

PS C:\MyPSTool> git log
commit 038b8f9ca8b846e9024532e9bda4e272cd24048b
Author: James Petty <James@globomantics.com>
Date: Wed Jun 14 16:04:11 2023 -0500
 added basic commands

The username makes it easy to detect (or blame someone for) changes a specific
user makes.

19.3.4 Rolling back a change

Let’s quickly examine why we’re bothering with all this. We created a simple text file
and committed it to the repository:

PS C:\MyPSTool> set-content -value 'james' -Path .\data.txt
PS C:\MyPSTool> git add .
PS C:\MyPSTool> git commit -m "Added data.txt"

http://mng.bz/9r4E

198 CHAPTER 19 An introduction to source control with Git

[main 9113535] Added data.txt
 1 file changed, 1 insertion(+)
 create mode 100644 data.txt
PS C:\MyPSTool> git log
commit 9113535942d0c35a964deda9e869a0193bb284ad
Author: James Petty <James@globomantics.com>
Date: Wed Jun 14 16:12:31 2023 -0500
 Added data.txt
commit 038b8f9ca8b846e9024532e9bda4e272cd24048b
Author: James Petty <James@globomantics.com>
Date: Wed Jun 14 16:04:11 2023 -0500
 added basic commands
PS C:\MyPSTool>

Now we’ll modify the data.txt file and commit that change:

PS C:\MyPSTool> set-content -value "james" -Path .\data.txt
PS C:\MyPSTool> get-content .\data.txt
james
PS C:\MyPSTool> git commit -a -m "set data.txt to james"
[main ee546b7] set data.txt to james
 1 file changed, 1 insertion(+), 1 deletion(-)
PS C:\MyPSTool>

This time, we used a shortcut to commit all pending files with –a, skipping the need
to run git -add.

 The log is getting long, so let’s get the last three entries:

PS C:\MyPSTool> git log -n 3
commit ee546b73819f1ebbc8b7073c79113e0b6adb5c33
Author: James Petty <James@globomantics.com>
Date: Wed Jun 14 16:15:48 2023 -0500
 set data.txt to james
commit 9113535942d0c35a964deda9e869a0193bb284ad
Author: James Petty <James@globomantics.com>
Date: Wed Jun 14 16:12:31 2023 -0500
 Added data.txt
commit 038b8f9ca8b846e9024532e9bda4e272cd24048b
Author: James Petty <James@globomantics.com>
Date: Wed Jun 14 16:04:11 2023 -0500
 added basic commands
PS C:\MyPSTool>

The last entered commit is the problem. In this particular situation, we can reset
Git like this:

PS C:\MyPSTool> git reset --hard head~1
HEAD is now at 9113535 Added data.txt
PS C:\MyPSTool> get-content .\data.txt
don

19919.3 Repository basics

Or suppose some time has passed, and we’ve made several other commits: in our test
repository, we’ve added new files. Then, we realize we need to roll everything back to
this commit:

commit 9113535942d0c35a964deda9e869a0193bb284ad
Author: James Petty <James@globomantics.com>
Date: Wed Jun 14 16:12:31 2023 -0500
 Added data.txt

We can use the reset option again, but this time, specify the commit hash number. You
don’t need the full hash; typically, a short hash of the first seven digits will suffice.

 Here’s what the repository looks like now:

PS C:\MyPSTool> dir
 Directory: C:\MyPSTool
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 6/14/2023 4:49 PM 13 data.txt
-a---- 6/14/2023 3:47 PM 48 file1.ps1
-a---- 6/14/2023 3:56 PM 66 file2.ps1
-a---- 6/14/2023 4:50 PM 0 foo.txt
-a---- 6/14/2023 4:46 PM 786 num.txt
PS C:\MyPSTool> get-content .\data.txt
james
jason

Next, we want to roll back to commit 9113535942d0c35a964deda9e869a0193bb284ad
using the short hash value:

PS C:\MyPSTool> git reset --hard 9113535
HEAD is now at 9113535 Added data.txt

Here’s what the repository looks like after the change:

PS C:\MyPSTool> get-content .\data.txt
don
PS C:\MyPSTool> dir
 Directory: C:\MyPSTool
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 6/14/2023 5:54 PM 5 data.txt
-a---- 6/14/2023 3:47 PM 48 file1.ps1
-a---- 6/14/2023 3:56 PM 66 file2.ps1

This is a tricky process and not one you want to undertake all the time, but we wanted
to demonstrate the value of source control at least.

 There are a number of other types of operations you might need to undo as well.
Check “Git Basics – Undoing Things” at http://mng.bz/p1AP for some helpful guidance.

https://shortener.manning.com/p1AP
http://mng.bz/p1AP

200 CHAPTER 19 An introduction to source control with Git

19.3.5 Branching and merging

One of the benefits of Git that can reduce the need to roll back changes is the concept
of branching. A Git branch is a copy of your files, perhaps from a particular commit.
You can work on the files without disturbing your main (production) copies. When
you’re ready, the changes can be merged into your main branch.

 Let’s create a branch called dev in the MyPSTool folder:

PS C:\MyPSTool> git branch dev
PS C:\MyPSTool> git branch
 dev
* main

The asterisk indicates the currently active or checked-out branch. We’ll switch to the
dev branch and add a file using the PowerShell Set-Content cmdlet:

PS C:\MyPSTool> git checkout dev
git : Switched to branch 'dev'
 + CategoryInfo : NotSpecified: (Switched to branch
'dev':String) [], RemoteException
 + FullyQualifiedErrorId : NativeCommandError
PS C:\MyPSTool> set-content -value '12345' -Path devdata.txt
PS C:\MyPSTool> dir
 Directory: C:\MyPSTool
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 6/14/2023 5:54 PM 5 data.txt
-a---- 6/14/2023 6:03 PM 7 devdata.txt
-a---- 6/14/2023 3:47 PM 48 file1.ps1
-a---- 6/14/2023 3:56 PM 66 file2.ps1

PowerShell will detect the branch change as an error; we can ignore it. We’ve added a
file that we can see in the directory. Let’s add and commit:

PS C:\MyPSTool> git add .
PS C:\MyPSTool> git commit -m "added devdata"
[dev 850ca50] added devdata
 1 file changed, 1 insertion(+)
 create mode 100644 devdata.txt
PS C:\MyPSTool> git status
On branch dev
nothing to commit, working tree clean

But watch what happens if we change back to the main branch (we omitted the
error message):

PS C:\MyPSTool> git checkout main
PS C:\MyPSTool> dir
 Directory: C:\MyPSTool
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 6/14/2023 5:54 PM 5 data.txt

20119.3 Repository basics

-a---- 6/14/2023 3:47 PM 48 file1.ps1
-a---- 6/14/2023 3:56 PM 66 file2.ps1

The file isn’t there. If we’d made changes to the files, we wouldn’t see those either.
 We went ahead and switched back to the dev branch and made a few more

changes, and then went back to main. We’re curious about the differences between
the two branches:

PS C:\MyPSTool> git diff dev
diff --git a/data.txt b/data.txt
index f71dff2..910fbb7 100644
--- a/data.txt
+++ b/data.txt
@@ -1,3 +1 @@
 don
-james
-jason
diff --git a/devdata.txt b/devdata.txt
deleted file mode 100644
index e56e15b..0000000
--- a/devdata.txt
+++ /dev/null
@@ -1 +0,0 @@
-12345

Don’t worry if this doesn’t make sense now—checking differences is optional. But now
we’ll integrate or merge the branches:

PS C:\MyPSTool> dir
 Directory: C:\MyPSTool
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 6/14/2023 6:12 PM 5 data.txt
-a---- 6/14/2023 3:47 PM 48 file1.ps1
-a---- 6/14/2023 3:56 PM 66 file2.ps1
PS C:\MyPSTool> git merge dev
Updating 9113535..b62af84
Fast-forward
 data.txt | 2 ++
 devdata.txt | 1 +
 2 files changed, 3 insertions(+)
 create mode 100644 devdata.txt
PS C:\MyPSTool> dir
 Directory: C:\MyPSTool
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 6/14/2023 6:17 PM 18 data.txt
-a---- 6/14/2023 6:17 PM 7 devdata.txt
-a---- 6/14/2023 3:47 PM 48 file1.ps1
-a---- 6/14/2023 3:56 PM 66 file2.ps1

We included before and after directory listings so you can see the changes.

202 CHAPTER 19 An introduction to source control with Git

 Using branches is an ideal way to test and develop new code without worrying
about messing up your current version. If you decide to scrap the code or are finished
with the branch, you can delete it:

PS C:\MyPSTool> git branch -d dev
Deleted branch dev (was b62af84).

19.4 Using Git with VS Code
Once you understand the core Git concepts, such as branches, staging, and commit-
ting, you can use Git features in other products, such as Visual Studio Code (VS
Code). Git support is integrated into the product, and several third-party Git-related
extensions exist. Of course, you must have Git (v2.0.0 or later) installed on your com-
puter for any of this to work.

 In VS Code, you can open an entire folder, which is handy when developing a
module. If the folder is a Git repository, VS Code will detect that. Figure 19.1 shows
our test folder open in VS Code.

Git menu

Figure 19.1 Git support in VS Code

20319.4 Using Git with VS Code

VS Code detected the current branch. There’s also an icon to access Git-related
actions. We’ll make some changes to files in the repository in the editor.

 When changes are detected, VS Code displays a number over the Git icon, indicat-
ing the number of files. Click the icon to see the changes, as shown in figure 19.2.

In the console, Git shows the changes like this:

PS C:\MyPSTool> git status
On branch main
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)
 modified: file1.ps1
Untracked files:
 (use "git add <file>..." to include in what will be committed)
 file3.ps1
no changes added to commit (use "git add" and/or "git commit -a")

But you don’t have to use Git from the command line. In VS Code, you can hover the
mouse over a file and stage or discard changes on a per-file basis, or you can do the
same for all files by hovering over changes. We staged all the changes, as shown in fig-
ure 19.3. All that remains is to commit the changes by typing a commit message in the
box and clicking the checkmark icon. You can also use the … popup menu to per-
form other Git actions (see figure 19.4).

 You can even check out or create other branches. Access the command palette by
pressing the Ctrl-Shift-P shortcut. In the box, type git, and VS Code will auto-populate
the drop-down list with available commands. Scroll down to the option to create a new
branch, and enter a name for the branch. VS Code will create it and automatically

Figure 19.2 Git changes in VS Code

204 CHAPTER 19 An introduction to source control with Git

Figure 19.3 Staged changes
in VS Code

Figure 19.4 Other Git options

20519.5 Integrating with GitHub

check it out. You can tell because the lower-left corner will indicate the current
branch. When you’re ready, click the branch name at the lower left, and in the com-
mand palette box, click the name of the branch you want to check out.

 VS Code makes it easy to see, undo, and compare changes. We’ll let you explore
the other Git-related icons in the application.

 But VS Code is primarily an editor, not a graphical Git tool, so some operations
require the command line. One example is merging. Yes, you can create a new
branch, modify, and commit files. But there’s no way to merge branches in the version
of VS Code that’s available as we’re working on this book. Fortunately, you can use the
integrated terminal to run Git commands (see figure 19.5).

TIP You can learn more about VS Code and source control integration at
http://mng.bz/OP5P.

19.5 Integrating with GitHub
The other cool Git-related tool is GitHub. This is a web-based Git repository hosting
service with its own set of features. There are multiple tiers available, and it’s up to you
to decided what you need. You technically don’t have to have Git installed on your
computer, but many people do so that they can clone an online repository locally,
make changes locally, and push them back to GitHub. This is also how a lot of collabo-
ration is happening today. If you’re curious, check out these links:

Figure 19.5 Git commands from the VS Code terminal

https://shortener.manning.com/OP5P

206 CHAPTER 19 An introduction to source control with Git

 https://github.com/psjamesp
 https://github.com/powershellorg
 https://github.com/devops-collective-inc
 https://github.com/powershell

Integrating Git with GitHub, especially when you start cloning other repositories and
making changes via pull requests, can be confusing and intimidating. But we wanted
to give you some basic exposure to how you can use GitHub with your work.

 Suppose that, on GitHub, you want to create a copy of the MyPSTool project
you’ve been working with locally. This is a good place to maintain the main code while
you develop and revise locally, and if other people need to work on the project, they
can clone their copy of the repository to their desktop.

 For the sake of simplicity, we’ll use James’s GitHub repository (https://github
.com/psjamesp), which, as an added benefit, means you can clone the repository and
try things yourself. This also means we’ve modified the username and email in our Git
configuration to match James’s GitHub account. We’re assuming that when you sign
up for GitHub (which is free, by the way), you’ll use the same names as you do locally
or vice versa.

 There are two ways to integrate GitHub with a local Git project; which you
choose ultimately comes down to where you’re starting from. In our case, we already
have a local repository that we want to push to GitHub. In GitHub, we’ll create a
new public repository (see figure 19.6).

Figure 19.6 Creating a GitHub repository

https://github.com/psjamesp
https://github.com/powershellorg
https://github.com/devops-collective-inc
https://github.com/powershell
https://github.com/psjamesp
https://github.com/psjamesp
https://github.com/psjamesp

20719.5 Integrating with GitHub

It isn’t necessarily required, but we recommend using the same name as your local
folder. Feel free to add a description. In this case, you don’t need to add a readme file
or anything else because you’ll be using an existing local repository.

 On the next screen, GitHub provides the code you need, depending on your situa-
tion. In our case, we want to push an existing repository from the command line. We’ll
use these commands from the root of the local folder:

PS C:\MyPSTool> git remote add origin
https://github.com/psjamesp/MyPSTool.git
PS C:\MyPSTool> git push -u origin main
Counting objects: 17, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (12/12), done.
Writing objects: 100% (17/17), 1.46 KiB | 0 bytes/s, done.
Total 17 (delta 2), reused 0 (delta 0)
remote: Resolving deltas: 100% (2/2), done.
To https://github.com/psjamesp/MyPSTool.git
 * [new branch] main -> main
Branch main set up to track remote branch main from origin.

You can check the remote configuration like this:

PS C:\MyPSTool> git remote
Origin

Alternatively, you can have more verbose detail:

PS C:\MyPSTool> git remote -v
origin https://github.com/psjamesp/MyPSTool.git (fetch)
origin https://github.com/psjamesp/MyPSTool.git (push)

In GitHub, you can now see the repository with the most current files from the local
folder, as shown in figure 19.7.

 You could make changes with the editor in GitHub, but we’ll assume you’ll make
changes locally. Use the local Git commands as you normally would, such as commit-
ting files:

PS C:\MyPSTool> git commit -m 'new changes'
[main 737445d] new changes
 3 files changed, 9 insertions(+), 1 deletion(-)
 create mode 100644 file4.ps1

But now, the next time you check the status, Git tells you that you aren’t in synch with
the GitHub repository:

PS C:\MyPSTool> git status
On branch main
Your branch is ahead of 'origin/main' by 1 commit.
 (use "git push" to publish your local commits)
nothing to commit, working tree clean

Adds a remote
link to GitHub

Pushes the main
branch to the remote

208 CHAPTER 19 An introduction to source control with Git

It even provides instructions by telling you what to use!

PS C:\MyPSTool> git push
Counting objects: 5, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (5/5), 600 bytes | 0 bytes/s, done.
Total 5 (delta 0), reused 0 (delta 0)
To https://github.com/psjamesp/MyPSTool.git
 abeeecd..737445d main -> main

Return to the browser and refresh, and you’ll see the changes.
 If you or a collaborator modify files in GitHub, you must manually check and pull

those changes down. Running git status won’t tell you that remote files have changed:

PS C:\MyPSTool> git status
On branch main
Your branch is up-to-date with 'origin/main'.
nothing to commit, working tree clean

You’ll need to fetch and pull:

Most recently
added file

Figure 19.7 The local repository is now on GitHub.

20919.5 Integrating with GitHub

PS C:\MyPSTool> git fetch
remote: Counting objects: 6, done.
remote: Compressing objects: 100% (5/5), done.
remote: Total 6 (delta 2), reused 0 (delta 0), pack-reused 0
Unpacking objects: 100% (6/6), done.
From https://github.com/psjamesp/MyPSTool
 737445d..01f65d7 main -> origin/main

The fetch retrieves remote changes. If you get the prompt, then there are no changes.
But if something comes back when you fetch, you need to pull the files from the
remote repository:

PS C:\MyPSTool> git pull
Updating 737445d..01f65d7
Fast-forward
 data.txt | 1 -
 file1.ps1 | 2 +-
 2 files changed, 1 insertion(+), 2 deletions(-)
PS C:\MyPSTool>

These are the changes we made in GitHub. Once again, the local and remote reposi-
tories are in synch.

 The other way is to start your project on GitHub first and then clone it locally. Fol-
low the same steps to add a new repository in GitHub; we added one with a readme
and license that skips the page with the code commands. Then, click the Clone Or
Download button, and copy the link to the clipboard.

 In PowerShell, set your location to the parent directory of where you want to cre-
ate the repository. For our demonstration, we created a GitHub repository for a Share-
Point toolset we’re planning to build (well, not really). We wanted the local repository
to be under C:\scripts, so we made sure we were in that location before running the
git clone command:

PS C:\scripts> git clone https://github.com/psjamesp/sharepointtools.git
Cloning into 'sharepointtools'...
remote: Counting objects: 4, done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 4 (delta 0), reused 0 (delta 0), pack-reused 0
Unpacking objects: 100% (4/4), done.

We then changed to the new repository to see the new files:

PS C:\scripts> cd .\sharepointtools\
PS C:\scripts\sharepointtools> dir
 Directory: C:\scripts\sharepointtools
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 6/19/2023 2:59 PM 1088 LICENSE
-a---- 6/19/2023 2:59 PM 44 README.md

From here on, we used the same steps we showed you.

210 CHAPTER 19 An introduction to source control with Git

TRY IT NOW We don’t have any exercises for this topic. Using Git is something
you have to do on your own. We encourage you to install Git on your test box.
Create a folder, and start playing with the Git commands. Experience will be
the best teacher. Fortunately, if you run into a problem, a wealth of informa-
tion and tips are available online.

Summary
We don’t care what source or version control system you use, but we encourage you to
use something. Git is a good choice because it’s widely used, there’s an incredible
amount of online help and references, and it generally seems to be what all the cool
kids are using these days. Git is a technology that’s like a foreign language—you won’t
gain any proficiency unless you use it all the time.

 You don’t have to do anything with GitHub, but it’s a handy collaboration tool,
and, if nothing else, a good off-site location. Your company may already have a cor-
porate GitHub account you can use or a private repository server that offers the
same functionality.

211

Pestering your script

Pester is a powerful tool for automating your testing in PowerShell scripts. As we
transition into a DevOps-oriented world, it becomes crucial to ensure the reliability
of your scripts. No one wants a broken script running in a production environ-
ment. Even if you test your script initially, modifications or unique conditions
might arise that require retesting. This chapter will delve into automated unit test-
ing for PowerShell scripts using Pester.

20.1 The vision
Here’s where we want to get you:

1 You write some code or modify some old code.
2 You check your code into a source control repository.
3 The repository triggers a continuous integration pipeline. Usually incor-

porating third-party tools, the pipeline builds a virtual machine to test
your script. The pipeline copies your script into the virtual machine and
runs several automated tests. If the tests fail, you get an email telling you
what happened.

4 If the tests pass, your code is deployed to a deployment repository (maybe
PowerShellGallery.com or a private repository), making it available for
production.

Step 3 in this list, called “The Miracle,” is entirely automated. To enable The
Miracle, you must contribute an automated testing mechanism to your code.
This way, any code revisions can be quickly retested, ensuring its functionality
before deployment.

212 CHAPTER 20 Pestering your script

20.2 Problems with manual testing
We’re sure that you’ve manually tested scripts before—possibly even as you wrote
scripts for this book. And that’s fine—you should test your code as you go. But there
are some problems with manual testing:

 You’re lazy. So are we. You’re not going to run every possible test every time
through, and it will always be the test you didn’t run that would have caught the
error you just made in your code.

 It’s time-consuming. Even if you’re not lazy, manual testing takes time and
effort that could be better spent elsewhere.

 It doesn’t tend to be learned. It’s not like you have a huge list of tests you know
you need to run; you’re probably doing what we do and thinking, “Well, I’ll run
it with parameters one time and pipe some stuff to it another time, and that’s
probably good.” If you fix a problem, you might test that specific problem right
then, but you might or might not retest that specific problem in the future.

 It’s manual. You can’t achieve The Miracle with manual testing. Remember,
PowerShell is all about automation—why should testing be excluded from that?

20.3 Benefits of automated testing
Automated testing, on the other hand, rocks—mainly because it’s automatic and learns. If
you run across a weird condition that broke your code once, you add a test for that con-
dition to your test script, and then you’ll never forget to test that weird condition again.
Automated tests, therefore, serve as a kind of documented institutional memory. Even if
someone else modifies your script, and they don’t know about that weird condition, the
automated test will have their back and make sure the weird condition gets tested.

 Automated testing can even move you to a world of test-driven development (TDD).
Let’s say you decide to add a new feature to a command. Rather than breaking out and
modifying the command’s script, you write a few tests to test the proposed new feature.
Those tests describe how you want the new feature to work, so they serve as a functional
specification. The tests will initially fail because you haven’t coded up the new feature
yet. But then you start coding the new feature and keep coding until all the tests pass. If
you did well on the tests, you’ll know your feature is working correctly.

20.4 Introducing Pester
Pester (PowerShell Tester) is an open source project bundled with Windows 10 and later
(newer versions can be found in the PowerShell Gallery). It’s an automated unit-test-
ing framework for PowerShell. In other words, you write your tests in Pester, and Pes-
ter runs your tests for you. Pester’s basic documentation is in the wiki of its GitHub
repository at https://github.com/pester/Pester/wiki.

NOTE This chapter provides the barest introduction to Pester, intending to
whet your appetite. It would be best if you read the docs to discover all the
other cool things Pester can do that we don’t even mention.

https://github.com/pester/Pester/wiki

21320.6 What do you test?

As an interesting side note, Microsoft uses Pester to automate the testing of its own
PowerShell resources. All kinds of Pester tests are included in the various open source
PowerShell-based components that the PowerShell team has written. These tests num-
ber in the thousands! That, if nothing else, should tell you how important and well-
regarded Pester is to and by the PowerShell community.

20.5 Coding to be tested
To have a successful relationship with Pester, you must start writing commands and
scripts that lend themselves to testing. Follow all the advice we’ve provided in this
book. Specifically, focus on making self-contained, single-task tools. Tools that do
eight different things will be hard to test because you’ll need to test every one of those
eight things in all possible combinations and permutations. On the other hand, a tool
that does one thing is a lot easier to write tests for.

 It would be best if you also recognized that Pester is a PowerShell testing frame-
work—not .NET, SQL Server, or anything else. It works best when it only has to deal
with PowerShell commands. If you’re following our advice—which we’ll explore in
detail later in this chapter—then you’re writing PowerShell commands to wrap any
non-PowerShell code you may need to use, meaning, at the end of the day, you’re
only dealing with PowerShell commands. In that scenario, you and Pester will get
along fine.

20.6 What do you test?
Because this is intended to be a bare-bones introduction to Pester, we’ll fudge a few
terms that the automated testing industry takes pretty seriously to put them in a better
context with PowerShell. Specifically, we’ll use the terms unit testing and integration test-
ing to lay out a couple of scenarios to help you understand what to write tests for.

20.6.1 Integration tests

An integration test tests the end state of your command. If you wrote a command to cre-
ate an SQL Server database, an integration test would run the command and then
check to see whether the database existed. In other words, it tests the final effect of
your code on the world at large. An integration test treats your code as a black box,
meaning it doesn’t necessarily know what’s happening inside the code. It doesn’t test
to see whether you instantiated the right .NET classes to connect to SQL Server, and it
doesn’t test whether the username and password you provided work. It just checks the
result. You might use an integration test to verify that your toolset accomplishes a spe-
cific task under various situations.

 Integration tests are a good thing, but they’re not the only thing.

20.6.2 Unit tests

Unit tests are more granular, and they’re trickier to imagine. They’re not concerned
with whether your code accomplishes anything—they only want to ensure the code runs.

214 CHAPTER 20 Pestering your script

For example, you might have a command that can change a service’s startup mode
and logon password, or it can do just one of those things, depending on which param-
eters it provides. A unit test will run in all three ways and ensure all the internal logical
decisions and code paths run correctly. Whether any particular service is changed or
not isn’t the concern of the unit test.

 Often, you’ll write unit tests and integration tests. There may be times when you
only write unit tests because you’re only concerned about your code following the cor-
rect paths and logical decisions, and perhaps because doing something—which an inte-
gration test would require—would damage or negatively affect your environment.
This can be a hard concept for folks to grasp. For example, if you wrote a command
that reboots a computer, how could you not check to see whether the computer rebooted?
Well, it depends. If you were calling a command like Restart-Computer, you wouldn’t
need to test that—you’d want to test your code that led up to Restart-Computer being
called, which brings us to our next point.

20.6.3 Don’t test what isn’t yours

Particularly with unit tests, your goal is to test your code. The Restart-Computer com-
mand isn’t your code. It’s Microsoft’s code. If Microsoft’s code is broken, that isn’t your
problem. Your unit test ensures the code you can control works correctly. Let’s take
that exact scenario and turn it into a Pester example.

20.7 Writing a basic Pester test
Let’s start with the command shown in the following listing. It’s deliberately simple so
that we can focus on the unit-testing aspect. The command will allow you to either
restart or shut down a computer.

function Set-ComputerState {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True)]
 [string[]]$ComputerName,
 [Parameter(Mandatory=$True)]
 [ValidateSet('Restart','Shutdown')]
 [string]$Action,
 [switch]$Force
)
 BEGIN {}
 PROCESS {
 ForEach ($comp in $ComputerName) {
 $params = @{'ComputerName' = $comp}
 # force?
 if ($force) {
 $params.Add('Force',$true)
 }

Listing 20.1 A command to test

21520.7 Writing a basic Pester test

 # which action?
 If ($Action -eq 'Restart') {
 Write-Verbose "Restarting $comp (Force: $force)"
 Restart-Computer @params
 } else {
 Write-Verbose "Stopping $comp (Force: $force)"
 Stop-Computer @params
 }
 }
 } #PROCESS
 END {}
}

READ IT NOW Take some time to read through this command and develop an
expectation for what it does and how it works. You may think of other, and
even better, ways to accomplish its task. We’ve gone this route to help illus-
trate Pester testing well.

When it comes to unit testing, we know right away two things we won’t be testing:
whether Restart-Computer or Stop-Computer work, even though those are the only
two things that are doing anything! Remember, if we were writing an integration test,
that would matter. The difference is that unit tests don’t care about the result; they
care about whether our code runs correctly. We won’t unit test them because those two
commands aren’t our code.

20.7.1 Creating a fixture

We’ll start by loading the Pester module and asking it to create a new test fixture for us:

PS C:> Import-Module Pester
PS C:> Mkdir example
PS C:> New-Fixture –Path example –Name Set-ComputerState

Inside or outside?
Another way to think about unit and integration tests is like this: How much of your
code does the test know about?

With an integration test, your code is a black box, as we suggested earlier. The test
doesn’t know how you accomplished a restart or a shutdown; it only cares whether it
occurred. The integration test doesn’t know anything about the contents of your com-
mand; it isn’t going to try to make sure every possible code path is tested, every pos-
sible parameter is used, and so on.

With a unit test, your code is an open book. The test doesn’t care about the result of
running your code—it only cares about whether all of your code ran. Was every param-
eter used in some way? Did every code path execute? Was every logical decision run
in every possible combination? It’s about the code, not the result.

Again, both kinds of tests are essential, but we’re focused on unit tests for now.

216 CHAPTER 20 Pestering your script

This new fixture is a couple of blank files: one for our code (Set-ComputerState.ps1)
and one for our tests (Set-ComputerState.Tests.ps1). Think of the fixture as a skele-
ton. We’ll open both in Visual Studio Code (VS Code). We’ll paste our function into
Set-ComputerState.ps1 as a starting point, replacing the empty Set-ComputerState
function already there.

TRY IT NOW Follow along with us, set up your fixture, and paste listing 20.1
into the code script.

The test script—which you should create on your own by running the previous com-
mands, so we won’t provide a copy as a downloadable sample—should look like this:

BeforeAll {
 . $PSCommandPath.Replace('.Tests.ps1', '.ps1')
}

Describe "Set-ComputerState" {
 It "Returns expected output" {
 Set-ComputerState | Should -Be "YOUR_EXPECTED_VALUE"
 }
}

Aside from the first three commands at the top, which link this test code to the code
script, there are two sections:

 The Describe block is designed to contain a set of tests. These all execute
within the same scope. Scoping in Pester is both complex and powerful, and as
you get into more complex tests, you’ll often define multiple Describe blocks.
For now, we’ll stick with this one.

Installing and updating Pester
We’re assuming that the Pester module is available on your system; on Windows 10
or later, it will be available by default. If you don’t have the module, install it first from
the PowerShell Gallery by running Install-Module Pester.

If you’re running Windows 10 or later, the shipping version of the Pester module is
outdated. Unfortunately, updating the module from the PowerShell Gallery is prob-
lematic. You can’t uninstall the shipping version (at least, not easily), and you may
have problems getting the latest version. See the blog post “Power-Shell Package-
Management and PowerShellGet Module Changes in Windows 10 Version 1511,
1607, and 1703” from Microsoft MVP Mike Robbins (August 3, 2017, http://mng
.bz/40c7) for more details. As a last resort, you should be able to install the latest
version of the Pester module and have it run side by side with the shipping version
with this command:

Install-module pester -Repository psgallery -force –SkipPublisherCheck

http://mng.bz/40c7
http://mng.bz/40c7
http://mng.bz/40c7

21720.7 Writing a basic Pester test

 The It block represents a single test, which our code will either pass or fail.
A Describe block often contains many It blocks, each testing a specific, dis-
crete condition.

20.7.2 Writing the first test

Let’s modify the provided It block to test something:

Describe "Set-ComputerState" {
 It "accepts one computer name" {
 Set-ComputerState –ComputerName SERVER1 –Action restart |
 Should Be $true
 }
}

This is the basic model for an It block: you run something and then tell Pester what
the result should have been. However, what we’ve written here won’t work because
our Set-ComputerState function never outputs anything to the pipeline. Therefore,
it isn’t piping anything to Should, so it Should not look at a $true value as we’ve
implied. This brings us to a heck of a problem—when we have a function that doesn’t
produce any output, and we’re not attempting to test if it does anything, how do we
test the dang thing?

 Our dilemma, stated more specifically, is that we need to see how many times
Restart-Computer is called without calling Restart-Computer. Tricky. The answer to
that trick is a key element of Pester: the mock.

20.7.3 Creating a mock

In testing, you’ll often want to have some commands that seem to run but don’t run.
For example, you might need Import-CSV to import a specific CSV file, but you don’t
want to create the file. Or, in our case, we want Restart-Computer to seem to run so we
can figure out if our code tried to run it, but we don’t want to restart a computer. This
is where Pester’s mocking comes into play. It creates a fake replacement for an exist-
ing command, and that fake can do whatever you like:

Describe "Set-ComputerState" {
 BeforeAll {
 Mock Restart-Computer { return 1}
 Mock Stop-Computer { return 1}
 }

 It "accepts one computer name" {
 Set-ComputerState -computerName Localhost -action Restart |
 Should -Be 1
 }
}

Our fake version of Restart-Computer will now output 1. It won’t restart any comput-
ers—just output 1. So, if it’s called once, the result of Set-ComputerState should be 1.

218 CHAPTER 20 Pestering your script

We’ve told Pester as much with our It block. Let’s try running this simple test to see
whether it works. From our example folder, which contains our test script, we have to
run Invoke-Pester:

Describing Set-ComputerState
 [+] accepts one computer name 678ms
Tests completed in 678ms
Passed: 1 Failed: 0 Skipped: 0 Pending: 0 Inconclusive: 0

TRY IT NOW The results are better in full color, so see if you can get similar
output by copying what we’ve done so far.

The [+] tells us that our single test passed.

20.7.4 Adding more tests

Let’s add a few more tests:

Describe "Set-ComputerState" {
 Mock Restart-Computer { return 1 }
 Mock Stop-Computer { return 1 }
 It "accepts and restarts one computer name" {
 Set-ComputerState -ComputerName SERVER1 -Action Restart |
 Should -Be 1
 }
 It "accepts and restarts many names" {
 $names = @('SERVER1','SERVER2','SERVER3')
 $result = Set-ComputerState -ComputerName $names -Action Restart
 $result.Count | Should -Be 3
 }
 It "accepts and restarts from the pipeline" {
 $names = @('SERVER1','SERVER2','SERVER3')
 $result = $names | Set-ComputerState -Action Restart
 $result.count | Should -Be 3
 }
}

We took a different approach on the second two tests. Remember, each time our
mocked Restart-Computer runs, it outputs 1. That means running it three times
doesn’t output 3; it outputs three 1s. We capture that collection of integers into
$result. Then, on a new line, we pipe $result.Count to Should, checking whether
the array contains three items. This tells us that our mocked command was called
three times. Here are the results:

Describing Set-ComputerState
 [+] accepts and restarts one computer named 252ms
 [+] accepts and restarts many names 374ms
 [+] accepts and restarts from the pipeline 332ms
Tests completed in 959ms
Passed: 3 Failed: 0 Skipped: 0 Pending: 0 Inconclusive: 0

Saves the results
to a variable

Tests the
result count

21920.7 Writing a basic Pester test

Perfect! But there’s a slightly better way to construct these tests. When you mock a
command in Pester, behind the scenes, it automatically tracks how many times the
mock was used. Because our only goal is to count the number of times our fake com-
mand was run, we could let Pester do all the work for us. We’ll do this by using the
Should -Invoke command:

Describe "Set-ComputerState" {
 Mock Restart-Computer { return 1 }
 Mock Stop-Computer { return 1 }
 It "accepts and restarts one computer name" {
 Set-ComputerState -ComputerName SERVER1 -Action Restart
 Should -Invoke Restart-Computer -Exactly 1
 }
 It "accepts and restarts many names" {
 $names = @('SERVER1','SERVER2','SERVER3')
 Set-ComputerState -ComputerName $names -Action Restart
 Should -Invoke Restart-Computer -Exactly 3
 }
 It "accepts and restarts from the pipeline" {
 $names = @('SERVER1','SERVER2','SERVER3')
 $names | Set-ComputerState -Action Restart
 Should -Invoke Restart-Computer -Exactly 3
 }
}

Let’s try it:

Describing Set-ComputerState
 [+] accepts and restarts one computer named 740ms
 [-] accepts and restarts many names 144ms
 Expected Restart-Computer to be called 3 times exactly but was called 4
times
 18: Should -Invoke Restart-Computer -Exactly 3
 at <ScriptBlock>, \\vmware-host\Shared Folders\Documents\example\Set-
ComputerState.Tests.ps1: line 18
 [-] accepts and restarts from the pipeline 409ms
 Expected Restart-Computer to be called 3 times exactly but was called 7
times
 24: Should -Invoke Restart-Computer -Exactly 3
 at <ScriptBlock>, \\vmware-host\Shared Folders\Documents\example\Set-
ComputerState.Tests.ps1: line 24
Tests completed in 1.29s
Passed: 1 Failed: 2 Skipped: 0 Pending: 0 Inconclusive: 0

That’s not good. Looking at the failure output, it appears as if the counter doesn’t
reset for each It block by default. We have to modify the command so that it knows we
want to count for each It block rather than adding up everything that happened in
the parent Describe block:

Describe "Set-ComputerState" {
 Mock Restart-Computer { return 1 }

Tests how many
times the mock
was called

220 CHAPTER 20 Pestering your script

 Mock Stop-Computer { return 1 }
 It "accepts and restarts one computer name" {
 Set-ComputerState -ComputerName SERVER1 -Action Restart
 Should -Invoke Restart-Computer -Exactly 1 -Scope It
 }
 It "accepts and restarts many names" {
 $names = @('SERVER1','SERVER2','SERVER3')
 Set-ComputerState -ComputerName $names -Action Restart
 Should -Invoke Restart-Computer -Exactly 3 -Scope It
 }
 It "accepts and restarts from the pipeline" {
 $names = @('SERVER1','SERVER2','SERVER3')
 $names | Set-ComputerState -Action Restart
 Should -Invoke Restart-Computer -Exactly 3 -Scope It
 }
}

And now, let’s try it again:

Describing Set-ComputerState
 [+] accepts and restarts one computer name 430ms
 [+] accepts and restarts many names 335ms
 [+] accepts and restarts from the pipeline 283ms
Tests completed in 1.05s
Passed: 3 Failed: 0 Skipped: 0 Pending: 0 Inconclusive: 0

That’s exactly what we were looking for.

20.7.5 Code coverage

If one of the goals of unit testing is to ensure that all of your code runs, then you
need to know whether you’ve hit that goal. Pester can help. Running Invoke-Pester
-Code-Coverage ./Set-ComputerState.ps1 will generate a code-coverage report for that
script, like this one:

Describing Set-ComputerState
 [+] accepts and restarts one computer name 1.64s
 [+] accepts and restarts many names 68ms
 [+] accepts and restarts from the pipeline 1.55s
Tests completed in 3.26s
Passed: 3 Failed: 0 Skipped: 0 Pending: 0 Inconclusive: 0
Code coverage report:
Covered 70.00 % of 10 analyzed commands in 1 file.
Missed commands:
File Function Line Command
---- -------- ---- -------
Set-ComputerState.ps1 Set-ComputerState 24 $params.Add('Force',$true)
Set-ComputerState.ps1 Set-ComputerState 32 Write-Verbose "Stopping $comp
(Force: $force)"
Set-ComputerState.ps1 Set-ComputerState 33 Stop-Computer @params

Tracks asserted
mocks in the

It scope

22120.7 Writing a basic Pester test

This helps you understand what’s missing. Getting 100% code coverage means every
line of code ran; it doesn’t necessarily mean you’re finished testing because sometimes
you need to test different variations with that same code. But code coverage does help
you spot code paths you may have missed. In our case, we can see that we’ve never run
the code that accounts for our –Force parameter, and we’ve never run a test where we
try to stop a computer, rather than restart it. Let’s add some more tests:

Describe "Set-ComputerState" {
 Mock Restart-Computer { return 1 }
 Mock Stop-Computer { return 1 }
 It "accepts and restarts one computer name" {
 Set-ComputerState -ComputerName SERVER1 -Action Restart
 Should -Invoke Restart-Computer -Exactly 1 -Scope It
 }
 It "accepts and restarts many names" {
 $names = @('SERVER1','SERVER2','SERVER3')
 Set-ComputerState -ComputerName $names -Action Restart
 Should -Invoke Restart-Computer -Exactly 3 -Scope It
 }
 It "accepts and restarts from the pipeline" {
 $names = @('SERVER1','SERVER2','SERVER3')
 $names | Set-ComputerState -Action Restart
 Should -Invoke Restart-Computer -Exactly 3 -Scope It
 }
 It "accepts and force-restarts one computer name" {
 Set-ComputerState -ComputerName SERVER1 -Action Restart -Force
 Should -Invoke Restart-Computer -Exactly 1 -Scope It
 }
 It "accepts and shuts down one computer name" {
 Set-ComputerState -ComputerName SERVER1 -Action Shutdown
 Should -Invoke Stop-Computer -Exactly 1 -Scope It
 }
}

And let’s run that:

Describing Set-ComputerState
 [+] accepts and restarts one computer name 552ms
 [+] accepts and restarts many names 64ms
 [+] accepts and restarts from the pipeline 86ms
 [+] accepts and force-restarts one computer name 277ms
 [+] accepts and shuts down one computer name 115ms
Tests completed in 1.1s
Passed: 5 Failed: 0 Skipped: 0 Pending: 0 Inconclusive: 0
Code coverage report:
Covered 100.00 % of 10 analyzed commands in 1 file.

We now have more confidence that we’re testing all of our code paths and that our
code is responding how we want it to.

Additional
tests

Additional
tests

222 CHAPTER 20 Pestering your script

Summary
To close out this chapter, the following listing includes our completed test script, for
your reference.

$here = Split-Path -Parent $MyInvocation.MyCommand.Path
$sut = (Split-Path -Leaf $MyInvocation.MyCommand.Path) `
" -replace '\.Tests\.', '.'
. "$here\$sut"
Describe "Set-ComputerState" {
 Mock Restart-Computer { return 1 }
 Mock Stop-Computer { return 1 }
 It "accepts and restarts one computer name" {
 Set-ComputerState -ComputerName SERVER1 -Action Restart
 Should -Invoke Restart-Computer -Exactly 1 -Scope It
 }
 It "accepts and restarts many names" {
 $names = @('SERVER1','SERVER2','SERVER3')
 Set-ComputerState -ComputerName $names -Action Restart
 Should -Invoke Restart-Computer -Exactly 3 -Scope It
 }
 It "accepts and restarts from the pipeline" {
 $names = @('SERVER1','SERVER2','SERVER3')
 $names | Set-ComputerState -Action Restart
 Should -Invoke Restart-Computer -Exactly 3 -Scope It
 }
 It "accepts and force-restarts one computer name" {
 Set-ComputerState -ComputerName SERVER1 -Action Restart -Force
 Should -Invoke Restart-Computer -Exactly 1 -Scope It
 }
 It "accepts and shuts down one computer name" {
 Set-ComputerState -ComputerName SERVER1 -Action Shutdown
 Should -Invoke Stop-Computer -Exactly 1 -Scope It
 }
}

Of course, this may not be a complete test. We haven’t added any integration tests, for
example, and we haven’t tested to ensure that only values such as Restart and Shutdown
are accepted for the –Action parameter. This test could certainly grow to be more
complex—and we invite you to expand it to further explore how Pester can help auto-
mate your testing. You can jump on all this by reading the help topic about_pester.

Listing 20.2 Completed Pester test

223

Signing your script

In the world of highly effective PowerShell toolmakers, script signing is a habit that
can’t be overlooked. While some might find it daunting or unnecessary, we firmly
believe in its importance, which is why this chapter exists. Whether you anticipate
your scripts staying within your organization or not, script signing, coupled with
source control, should be a part of your toolkit.

21.1 The significance of script signing
Why should you invest your time and effort in script signing? At its core, a signed
script serves two crucial purposes. First, it authenticates the identity of the script’s
author. Now, this doesn’t necessarily guarantee the script’s safety or quality, but if the
script is signed, you can at least trace it back to its creator. Second, signing ensures
script integrity, verifying if the code has been tampered with since it was signed. Pro-
tecting your code is paramount, especially when it leaves the confines of your organi-
zation. Let’s say you receive a script from Sally or download one from a blog. How
confident are you that every line of code is precisely as Sally intended? If she has
signed the file, you can be certain that every character is a true reflection of Sally’s
work. Should any malicious code be discovered, you can hold Sally accountable.

 Internally, accidental modifications can happen. An innocent intern or an
unwitting boss might inadvertently alter your script. Without code signing, you may
only realize something is amiss when your script produces less-than-optimal results.
With signed scripts, PowerShell acts as your guardian, instantly notifying you of any
problems and allowing you to investigate promptly. PowerShell lives up to its name
as a powerful tool. A small piece of code can wreak havoc. Protect your code and,
in turn, yourself, by embracing script signing.

224 CHAPTER 21 Signing your script

21.2 A word about certificates
Before delving into script signing, you’ll need a certificate. Certificates are vital in
identity verification, acting as digital ID cards. Commercial certificate authorities
(CAs) are responsible for certifying identities by embedding the certificate holder’s
identity within the certificate. Certificates revolve around trust. If you trust the CA,
you can trust the certificate it issues.

 Code signing is a significant responsibility for CAs because code has the potential
to cause considerable harm. Obtaining a Class 3 code-signing certificate from a com-
mercial CA typically requires rigorous identity verification processes and is often
granted to organizations rather than individuals. However, organizations can set up
their internal public key infrastructure (PKI), run their own CA, and establish the
rules for certificate issuance. If your code stays within your organization, this is a cost-
effective alternative to purchasing a commercial code-signing certificate.

 In cases where you are the sole user and maintainer of your code on your personal
computer, you can create a self-signed certificate. While convenient for development,
self-signed certificates should be replaced with real certificates when deploying code
to others, even within your organization.

Once you have a certificate, you can install it and begin using it—which we’ll cover
briefly. Because this isn’t a chapter on PKI, we’ll refresh your memory that certificates
consist of key pairs. In particular, yours will have a private key that you should keep incred-
ibly safe and secure, even password-protecting it within the Windows certificate store so
that it can’t be used without your permission. The private key is used to generate script
signatures. A signature is a copy of your script (or, more commonly, a hash, which is still
unique to the script but takes up less room) that is encrypted using the private key and
bundled along with information about your certificate (but not the private key).

 Anyone else who trusts the source of your certificate can then decrypt that signa-
ture, using the public key side of the key pair. Their ability to decrypt it using your pub-
lic key means they can confirm your identity because only your closely held private key
could have encrypted the script in the first place. They can then compare the previ-
ously encrypted script to the clear-text version; if the two match, they know the code is
exactly as you wanted it to be.

Certificates, trust, and necessary effort
It’s no secret that managing certificates can be a hassle. They expire, necessitating
renewal, and setting up an internal PKI is a complex task. However, as IT profession-
als, this is part of our core competency, and we must be proficient in managing this
security aspect.

The traditional CA model faces competition from innovative approaches such as
notarization, which allows the creation of self-signed certificates with the oversight of
trusted individuals. While beyond the scope of this chapter, it’s worth exploring this
decentralized trust system as an alternative to centralized CA trust models.

22521.4 Code-signing basics

21.3 Configure your script signing policy
To make script signing effective, you need to configure your environment to require
signed scripts. Signing a script alone is insufficient if PowerShell isn’t instructed to enforce
this requirement. In an elevated PowerShell session, execute the following command:

Set-Executionpolicy AllSigned -force

The –Force parameter will suppress the confirmation prompt. It would be best if you
only did this once on any machine where you’ll be running scripts. Presumably, this is
your desktop or a centralized management server. You only want to rarely have to run
an interactive script on a remote server, so you can leave those execution policies set
to Restricted, which is the default.

 Even if you use Invoke-Command to run a local script on a remote server, Power-
Shell is running the contents of the command remotely. You should probably verify the
script locally before running it remotely. We’ll show you that in a few minutes.

 You can also use Group Policy to configure script-execution policies if you’re in an
Active Directory (AD) domain. Note that these policies aren’t security boundaries but
rather are like the covers on launch switches for nuclear missiles. We covered all of
this in much greater detail in chapter 7.

21.4 Code-signing basics
Delving into the basics of certificates and PKI is beyond the scope of this chapter, but
here’s a simplified explanation. A certificate is a cryptographic means of verifying
your identity. When you sign a script in PowerShell, your certificate’s identity informa-
tion is included in the script’s signature block, confirming you as the script’s author.
Additionally, PowerShell computes a hash value based on the script’s content and
embeds it in the script’s signature. If any modification, no matter how minor, is made
to the file, the signature breaks, and PowerShell reports the script as changed.

21.4.1 Acquiring a code-signing certificate

Not all certificates can be used for script signing; they must be Class 3 code-signing
certificates that support Microsoft’s Authenticode extension.

NOTE Class 3 is a term that VeriSign used back in the day; it’s rare to see it
now. Most people just call them code-signing certificates.

A CA trusted by your computer must also issue the certificate. Suppose you intend to
distribute signed tools outside of your organization. In that case, you’ll most likely
need a certificate from a third-party vendor such as VeriSign or DigiCert because any-
one downloading your code will trust them to have issued your certificate. But we
expect that most of you have an AD domain, ideally with a certificate infrastructure
(Active Directory Certificate Services [AD CS]). With this, you can quickly go through
the web-based interface to request a code-signing certificate under your organiza-
tion’s policies. You can then configure Group Policy so that domain members will

226 CHAPTER 21 Signing your script

trust your certificate (this will usually be in place if the PKI was set up correctly). The
details are beyond the scope of this book, but if you get stuck, we’re confident the res-
idents of the forums at PowerShell.org can help.

NOTE To summarize, step 1 is to find a CA—either commercial or external.
Remember that code-signing certificates aren’t cheap, and a cheap one
wouldn’t be worth the digital ink it’s made of. Certificates are usually issued
only to organizations such as companies, not to individuals, and when
obtained commercially, they typically have a reasonably extensive identity
verification process.

Another option for testing purposes, or if you intend that your PowerShell scripts and
tools will never leave your desktop, is to use a self-signed certificate. In years past, this
meant mastering the arcane command-line utility makecert.exe. But the PowerShell
PKI module, which you should get when you install the Remote Server Administration
Tools, includes a command that makes this easier. If you want to try out code signing,
run a command like this:

PS Cert:\> New-SelfSignedCertificate -type CodeSigningCert -Subject
"CN=James Petty" -CertStoreLocation Cert:\CurrentUser\My\ -testroot
 PSParentPath: Microsoft.PowerShell.Security\Certificate::CurrentUser\My

Thumbprint Subject EnhancedKeyUsageList
---------- ------- -----------
F33E9122D73BE220117339E9647F0037F3F875A6 CN=James Petty Code Signing

Naturally, insert your own name in the CN= part. Because this is a self-signed certifi-
cate, include the -TestRoot parameter. You’ll still get a certificate you can use, but
PowerShell will give you an “unknown error” message because it can’t verify the certif-
icate chain. That is, your computer doesn’t trust itself as a source of certificates.

 We’ve told PowerShell to store the certificate for the current user. This is easy
enough to verify with the -codesigningcert parameter on Get-ChildItem. We’ll use
the dir alias:

PS C:\> dir Cert:\CurrentUser\My\ -CodeSigningCert
 PSParentPath: Microsoft.PowerShell.Security\Certificate::CurrentUser\My
Thumbprint Subject
---------- -------
F33E9122D73BE220117339E9647F0037F3F875A6CN=James Petty

You can have multiple code-signing certificates installed, but you can only sign with a
single one. If you have multiple certificates installed, you’ll need to use PowerShell
and filter for the exact one.

TIP In the certificate world, a certificate’s thumbprint is its official, unique
name. You’ll see many references to it, and now you know how to find it.

22721.4 Code-signing basics

21.4.2 Trusting self-signed certificates

Before using a self-signed certificate, you may need to take a few additional steps
outside of PowerShell. At a prompt, run this command to open the certificate man-
agement snap-in:

Certmgr.msc

Navigate to where you stored the certificate, as shown in figure 21.1. You’ll see that
CertReq Test Root issues it. The problem you’ll run into is that the certificate for this
root isn’t completely trusted. Why would it be? Again, you can’t use your crayon-made,
self-signed driver’s license because nobody but you trusts it; it’s the same situation with
a self-signed certificate. You can install that root certificate by dragging and dropping
it from the Intermediate Certification Authority container to Trusted Root Certifica-
tion Authority, as indicated in figure 21.2.

You’ll be prompted with a warning dialog box. Go ahead and install the certificate.
Now you won’t get PowerShell error messages about an untrusted root when you use a
certificate that was created by your own computer.

NOTE This procedure won’t compromise your computer; it will just make it
trust the certificates that it produced. Certificates produced elsewhere will
still need to be trusted in the usual fashion.

Figure 21.1 Selecting the self-signed certificate

228 CHAPTER 21 Signing your script

21.4.3 Signing your scripts

To sign a PowerShell script, you need a reference to the certificate. We find it easy to
save the code-signing certificate to a variable:

PS C:\> $cert = dir Cert:\CurrentUser\My\ -CodeSigningCert

You may want to add this type of line to your PowerShell profile script so that it’s always
available. In our scripts directory, we have an extremely simple PowerShell script:

PS C:\scripts> get-content psvm.ps1
get-process | sort vm -desc | select -first 5

The cmdlet we’ll use is called Set-AuthenticodeSignature. That is a lot to type and a
good reason to use tab completion. But because you’re likely to be signing scripts
interactively, we suggest creating an alias in your PowerShell profile:

Set-Alias -Name sign -Value Set-AuthenticodeSignature

We’ll use this alias if for no other reason than to keep our examples short:

PS C:\scripts> sign .\psvm.ps1 -Certificate $cert
 Directory: C:\scripts
SignerCertificate Status Path
----------------- ------ ----
9D16AF2573AC6C01A33752CA5135F3700A6FE9CFCN Valid psvm.ps1

Figure 21.2 Moving the self-signed root certificate

22921.4 Code-signing basics

Here’s what the file looks like now:

PS C:\scripts> get-content .\psvm.ps1
get-process | sort vm -desc | select -first 5
SIG # Begin signature block
MIIFWAYJKoZIhvcNAQcCoIIFSTCCBUUCAQExCzAJBgUrDgMCGgUAMGkGCisGAQQB
gjcCAQSgWzBZMDQGCisGAQQBgjcCAR4wJgIDAQAABBAfzDtgWUsITrck0sYpfvNR
AgEAAgEAAgEAAgEAAgEAMCEwCQYFKw4DAhoFAAQUWlS7aTI+/TUJU7Izf4mzM8b1
HmWgggL6MIIC9jCCAd6gAwIBAgIQYcqwRS2cF6ZKK2DMJNsC6DANBgkqhkiG9w0B
AQsFADATMREwDwYDVQQDDAhBcnQgRGVjbzAeFw0xNzA2MTkxNDQ5NDZaFw0xODA2
MTkxNTA5NDZaMBMxETAPBgNVBAMMCEFydCBEZWNvMIIBIjANBgkqhkiG9w0BAQEF
AAOCAQ8AMIIBCgKCAQEAotwzL7nKq3uG1oZ/uMAwSELAeVaoIqFHr+zW1hWwW+UG
h/dftEaGsAmETjPnYRkABkGLqloiXXhmLQjY+QKtn51cue78B85mrSF5dqrfuuK6
XIVm7rjvMGwqyU6mpCs2RA3c+eObqgQZMJeOd/U9BnawlUijTcYGXptxc7M7ewWp
oVGSm2C385hB09pZJ5UpmonW81iZZ+nkoos1oMC2jdhdETR2JC/cfpjU1sP406Et
s2gR5jIiZuBBzTMgAlU4IRU38gXiS8q2UA3oyysyd2/+svRgDx/SrO+HV5ZmEqiF
epsY8DpaWn86MLYn+rjPSLgPbW6SNkwvHg58trEsIwIDAQABo0YwRDAOBgNVHQ8B
Af8EBAMCB4AwEwYDVR0lBAwwCgYIKwYBBQUHAwMwHQYDVR0OBBYEFH1ccCLNFjh0
ZqYdX2NvAASUku2PMA0GCSqGSIb3DQEBCwUAA4IBAQCXxfRfgI4KbsvXk0HKVI65
fJ4CAXDJaZyx2WtuaH4HF1WjhPMh9JjupA2244p/vH1FWERZ5llwR9AcwA8kK8EM
6aPD5Nu0MGis7gFvzK1K/dnxmgv+7ICS9j92GM4qIa8bcfIwBTTPehQKaJS2Q+bg
cm3eipPI4nxPPhSXLdg3FcglNfwU3aqQznHfmWj5cVgiqtMbe/CBh9hDcCFeW+y1
X6aAY1q+ADrMjILnhOETFpIn3eHmdHiC/q0PpKGJzn+uhwLncaVnahRaSXhIbApc
/9VqkPEg4kJFYVbewIeOjPWB+2IVtdtgag9X9HwTTP4nEIQ7KEz4jKMM9hPGacnV
MYIByDCCAcQCAQEwJzATMREwDwYDVQQDDAhBcnQgRGVjbwIQYcqwRS2cF6ZKK2DM
JNsC6DAJBgUrDgMCGgUAoHgwGAYKKwYBBAGCNwIBDDEKMAigAoAAoQKAADAZBgkq
hkiG9w0BCQMxDAYKKwYBBAGCNwIBBDAcBgorBgEEAYI3AgELMQ4wDAYKKwYBBAGC
NwIBFTAjBgkqhkiG9w0BCQQxFgQUsoYetaVPGXeBkFV4ddJTInDikFwwDQYJKoZI
hvcNAQEBBQAEggEARmE9VVlQ+HMYTFnOQ+lJGLvOcm7RKi5+pEVFhxTwoahbu6Zb
oZLEB6zUKx2RxLWkO1+FWiOJWGAAARPnNWCCxBKqAnedtqPNc0UVQ0J5gxuVzfO6
J5Q+3Uu7YbrbgeErC/hYOMmu9hY8a7H7ttxD0p0qHscV7R1kOSxrUGehU3+KLKFU
heKQlOL26DVGdk3KRayZTGzpDXHavkGAtcjcyiQPSPyRdmFcagdZ4VzrKzTT4m1w
i+uHap5xQ80EQBxfgHZT3yXKRA1tl9Mgnmi9XNcUro25i0tiKZTjkZe0voPJ7MX1
ePgJFLinSiRvIvzoqpOgN51CfQ/yWWdCsH+v4w==
SIG # End signature block

You shouldn’t need to mess with the signature block unless you want to completely
delete it. That’s the only way to unsign a file.

 You can also easily sign an entire directory full of scripts:

PS C:\scripts> dir *.ps1 | sign -Certificate $cert -WhatIf
What if: Performing the operation "Set-AuthenticodeSignature" on target
"C:\scripts\DirReport.ps1".
What if: Performing the operation "Set-AuthenticodeSignature" on target
"C:\scripts\psvm.ps1".
What if: Performing the operation "Set-AuthenticodeSignature" on target
"C:\scripts\lastdayofwork.ps1".
What if: Performing the operation "Set-AuthenticodeSignature" on target
"C:\scripts\newhire.ps1".

You can sign .ps1, .psm1, and .ps1xml files.

230 CHAPTER 21 Signing your script

TIP Note that you can’t sign .psd1 files, which are a manifest for a script
module. If you allow the execution of unsigned scripts on your system, then,
in theory, a piece of malware could find a .psd1 file and modify it to load a
malicious script when you loaded your otherwise all-signed module! It’s a risk,
but to be fair, that same piece of malware could attack you in a few dozen
other ways too. Be aware of the possibility so you can be extra cautious when
the situation calls for it.

21.4.4 Testing script signatures

Use Get-AuthenticodeSignature to test a script’s signature:

PS C:\scripts> Get-AuthenticodeSignature .\psvm.ps1
 Directory: C:\scripts
SignerCertificate Status Path
----------------- ------ ----
9D16AF2573AC6C01A33752CA5135F3700A6FE9CF Valid psvm.ps1

The output from Get-AuthenticodeSignature is another type of object. The object
properties are self-explanatory:

PS C:\scripts> Get-AuthenticodeSignature .\psvm.ps1 | select *
SignerCertificate : [Subject]
 CN=James Petty
 [Issuer]
 CN=CertReq Test Root, OU=For Test Purposes Only
 [Serial Number]
 5B0A36A612E5A78F400FEE5F02F930BB
 [Not Before]
 6/19/2017 10:07:53 AM
 [Not After]
 6/19/2018 10:27:53 AM
 [Thumbprint]
 9D16AF2573AC6C01A33752CA5135F3700A6FE9CF
TimeStamperCertificate :
Status : Valid
StatusMessage : Signature verified
Path : C:\scripts\psvm.ps1
SignatureType : Authenticode
IsOSBinary : False

If you didn’t follow our suggestion to install the self-signed root certificate, you’ll see
an “unknown error” status. That’s okay, but you won’t be able to run the script.

 If you have an AllSigned execution policy, you can still run the script:

PS C:\scripts> set-executionpolicy allsigned -force
PS C:\scripts> .\psvm.ps1
Do you want to run software from this untrusted publisher?
File C:\scripts\psvm.ps1 is published by CN=James Petty and is not trusted
on
your system. Only run scripts from trusted publishers.
[V] Never run [D] Do not run [R] Run once [A] Always run [?] Help

231Summary

(default is "D"): a
Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName
------- ------ ----- ----- ------ -- -- -----------
 1179 80 73368 472 9.31 376 2 SearchUI
 873 44 67712 43888 579.25 472 0 svchost
 3395 194 97616 27868 446.81 1116 0 svchost
 948 29 56096 22904 2.19 4920 2 powershell
 876 37 99696 47176 4.33 6080 0 powershell

The first time we run the script, we’re prompted about trusting the certificate. We’ll tell
PowerShell always to trust it, and, from then on, we can run the script with no prompts.

 Now we’ll make a slight change to the script, but without re-signing it, and attempt
to run it:

PS C:\scripts> .\psvm.ps1
File C:\scripts\psvm.ps1 cannot be loaded. The contents of file
C:\scripts\psvm.ps1 might have been changed by an unauthorized user or
process, because the hash of the file does not match the hash stored in the
digital signature.
The script cannot run on the specified system. For more information, run
Get-Help about_Signing..
 + CategoryInfo : SecurityError: (:) [], PSSecurityException
 + FullyQualifiedErrorId : UnauthorizedAccess

We get a rather severe error message, and the script isn’t executed. We want that! If we
didn’t make any changes, we want to investigate and figure out what changed. When
ready, we can re-sign the script and be ready to go.

Summary
Implementing script signing isn’t that difficult, especially if you have an AD PKI
(which ends up being easier and cheaper than a commercial CA) or another brand of
PKI internally. You can probably even configure your scripting editor to sign scripts
for you—many of them offer an option to do that when you save the file. If nothing
else, it’s a snap to sign all of your scripts at once. As we’ve explained before, imple-
menting digital signatures or requiring their use isn’t a security boundary. However, it
adds a critical safety check to ensure that the script you, or someone else, are about to
run is exactly the script you wrote.

232

Publishing your script

We hope that as you progress through this book, or shortly after that, you’ll develop
a fantastic, well-crafted PowerShell tool that solves an immediate problem. It would
be even more rewarding if it leads to a substantial raise for you. However, beyond
personal gains, we hope you’ll consider sharing your creation with the broader
PowerShell community. In recent years, this has become conveniently achievable
through the PowerShell Gallery, which hosts thousands of modules and scripts.

22.1 The importance of publishing
Publishing your script offers several benefits. First, it’s a generous act, contributing
positively to the broader PowerShell community. We want to express our gratitude in
advance for your willingness to do so. Moreover, it’s an excellent means to share your
tools with colleagues or yourself. You can publish your current version to the Power-
Shell Gallery (often called PSGallery) and install or update it as needed. If you have a
new version, you can also effortlessly publish it. The beauty is that your older versions
remain accessible, allowing you to test or reference them when necessary.

22.2 Exploring the PowerShell Gallery
The PowerShell Gallery is a free website maintained by Microsoft and accessible at
www.powershellgallery.com. Although you can interact with it directly, you’re more
likely to use a set of PowerShell cmdlets such as Find-Module and Install-Module
for most interactions. Microsoft has implemented stringent checks during script
uploads to ensure adherence to best practices. They also employ the PowerShell
Script Analyzer commands to scrutinize your code. Initial rejection is possible if
your code fails specific tests. To ensure a smooth experience, consider using Visual

http://www.powershellgallery.com/

23322.4 Before you publish

Studio Code (VS Code) for development, as it can help you pass these tests. It’s crucial
to remember that Microsoft can’t guarantee the effectiveness of a module, so you run
anything you download at your own risk. This underscores the importance of main-
taining a robust testing environment.

22.3 Other publishing options
While we emphasize PowerShell Gallery’s accessibility, note that it’s essentially a spe-
cialized type of website functioning as a NuGet-based repository. NuGet-based reposi-
tories have long been recognized as reliable publication and distribution mechanisms.
Anyone can establish a NuGet-based repository, and your organization may have one.
While we won’t delve into the intricacies of setting up and managing such servers in
this book, publishing them from PowerShell should closely mirror what we’ve dis-
cussed for the PowerShell Gallery.

22.4 Before you publish
Before you publish, we assume your project is complete, tested, and properly docu-
mented. This means it includes at least comment-based help. Your project reflects
you, so you want to make the best impression possible. But there are a few other pre-
liminary things to check off first.

22.4.1 Are you reinventing the wheel?

Although there’s no rule against publishing something that already exists, it’s worth
double-checking. Is there already a module that offers the same functionality as yours?
How is yours different? Use Find-Module to see what existing modules may compete
with yours.

 Suppose you have a module with some Active Directory (AD)–related commands.
You can run

find-module *activedirectory* | Select Version,Name,Author, `
 Description,PublishedDate

or search by tags

find-module -tag ad,activedirectory

You can also use your web browser by visiting www.powershellgallery.com and search-
ing (see figure 22.1). You can even refine your search-specific types and categories on
the website.

 You can also search for modules that are operating-system-specific or cross-plat-
form. The tags can quickly determine this. For example, let’s look at the DBATools
module (see figure 22.2). If we expand the Package Details section, we can see the
tags for Mac and Linux. DBATools can be run on PowerShell installed on any of these
operating systems.

http://powershellgallery.com

234 CHAPTER 22 Publishing your script

22.4.2 Updating your manifest

You’ll need a proper manifest, as generated by New-ModuleManifest. In it, make sure
you configure these settings:

 ModuleVersion—The accepted standard is known as semantic versioning. Techni-
cally, your value should be in the format a.b.c., such as 1.0.0. But you can get by
with something like 1.0.

 Author—This will most likely be your name. Try to use the same value on all of
your projects so people can identify what belongs to you. Don’t use “Don Jones”

Figure 22.1 PowerShell Gallery Search for Active Directory

Figure 22.2 Shows DBATools with Mac and Linux tags

23522.5 Ready, set, publish

on one and “Donald Jones” on another. Pick one and live with it. The only way
to change it is to publish a new version.

 Description—This is a biggie. You need to provide complete information
about why your module exists, what problems it solves, and how it’s different
from related projects.

 PrivateData—This is another biggie because Microsoft will pull values from
the manifest to populate metadata for your project in the gallery:
– Tags—You should enter at least one tag. You can enter as many as make

sense, separated by commas. Take a look at existing modules to get a sense
for what tags people are using.

– LicenseUri—Ideally, your project is also in a publicly accessible source con-
trol system such as GitHub. Insert the address to your license file here, which
of course you have.

– ProjectUri—This can be the URL to your GitHub repository or wherever
your project lives online. Some people like to be able to check your source
code. Or, in the case of GitHub, use the Issues feature to report bugs or
ask questions.

We assume you’ve already set the expected values for things such as RootModule, Guid,
and FunctionsToExport.

22.4.3 Getting an API key

Before publishing to the PowerShell Gallery, you must be a registered user with an
API key. On the PowerShell Gallery website (www.PowerShellGallery.com), click the
Register link, and follow the instructions. (Websites change, so we won’t bother with
screenshots.) At some point in the process, you’ll get an API key. You can always find
your key by logging in and clicking your name to view your profile. You should see the
Credentials section. Click the Show Key link to see everything. Assuming you have a
secure computer, you might consider putting your API key into a password manager
or key vault and using the PowerShell Secrets Module to retrieve it. You also can copy
the value and, in your PowerShell profile, create a variable:

$PSGalleryKey = 2XXXX7bd-771d-9999-8XXa-da41XXXX1abc

However, we prefer the first option. This will come in handy when it comes time to
publish your module.

22.5 Ready, set, publish
When you publish a module to the PowerShell Gallery, the Publish-Module cmdlet
will create a NuGet package from your module folder. The person who installs the
module will, in essence, get a copy of your folder. Remember when your Mom told
you to clean your room because company was coming over? This is like that. Deleting
temporary, scratch, or redundant files from your directory takes a few minutes. If

http://powershellgallery.com/

236 CHAPTER 22 Publishing your script

you’re using Git, the hidden .git directory will be ignored. If you need to retain files
for development that aren’t part of the final project, you can create a separate, clean
directory with just the module files.

 If you have a well-constructed manifest, you should be able to run a command
like this:

Publish-Module -path c:\scripts\MyTools -repository PSGallery
" -nugetapikey $psgallerykey

In this example, we use the saved API key we set earlier. If you didn’t complete your
manifest as we suggested, you should run the command and specify additional param-
eters such as -Tags and -FormatVersion.

 Unfortunately, you can’t publish your module without pushing it to the PowerShell
Gallery. We’d love to have an option to publish or save the package locally so we could
verify its contents before sharing it with the world. The best you can do is save the
module from the PowerShell Gallery and look at the downloaded files. If you don’t
like something, update your module, increase the version number, and republish.

22.5.1 Managing revisions

At some point, you may improve your module or fix bugs. You can republish your
module to the PowerShell Gallery using the same steps. The most important task to
remember is to update the version number in your module manifest. Users can get
the most recent version when they run Update-Module.

 Once your module is published, there’s no way to manage it through PowerShell—
you’ll have to use the PowerShell Gallery web page. To do so, follow these steps:

1 Sign in to your account.
2 Click your account name link.
3 Click Manage My Items.
4 Select a module from the list.
5 Scroll down the page until you see the Version History section. You can’t delete

anything, but you can hide a version. Click a link under Listed. All versions
probably say Yes.

6 Uncheck the box on the next page to disable showing this particular version in
search results.

7 Click Save.

Now, nobody will be able to see this version with Find-Module.
 On the module page, you’ll also see an Edit Module link. You can modify a few

things, such as the module description and summary, which appear in Additional
Metadata when you use Find-Module. These are the same items you can configure in
your module manifest, which is a better place to make those changes.

23722.6 Publishing scripts

22.6 Publishing scripts
Your module should have all the functions and tools you need. How you might use
them will be done with a controller script. The controller script automates the process
so that instead of typing a specific sequence of actions using commands from your
published module, you only need to run the script. You might want to share your con-
troller scripts. Microsoft recently provided an online repository for scripts, which
might be an option.

22.6.1 Using the Microsoft script repository

You can find scripts with the Find-Script cmdlet. You can run it without parameters
or search for something in a script name:

PS C:\> find-script *weather*
Version Name Repository Description
------- ---- ---------- -----------
1.0 Get-Weather PSGallery Shows Weather information....

With our example you may see a warning message or two, which appears to be related
to a problem with a script in the repository and not anything you’ve done wrong
locally or in running Find-Script.

 If you see a script you like, you can save it to a folder so you can inspect it:

PS C:\> save-script get-weather -path c:\dltemp

You can now look at the file—in our case, c:\dltemp\get-weather.ps1—and decide what
to do with it. If you like it, you can copy it to your scripts directory, or you can take
advantage of a PowerShell feature and install it:

PS C:\> install-script get-weather
PATH Environment Variable Change
Your system has not been configured with a default script installation path
yet, which means you can only run a script by specifying the full path to
the script file. This action places the script into the folder 'C:\Program
Files\PowerShell\Scripts', and adds that folder to your PATH
environment variable. Do you want to add the script installation path
'C:\Program Files\PowerShell\Scripts' to the PATH environment
variable?
[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"): y

As you can read from the prompt, installed scripts go into a specific directory, which is
added to the path:

PS C:\> get-command get-weather
CommandType Name Version Source
----------- ---- ------- ------
ExternalScript Get-Weather.ps1 C:\Program Files\WindowsPowerShell\...
PS C:\> get-command get-weather | Select path
Path

238 CHAPTER 22 Publishing your script

C:\Program Files\WindowsPowerShell\Scripts\Get-Weather.ps1

As an added benefit, you don’t need to specify the full path to the script file. You can
type the name of the script, and it will run:

PS C:\> get-weather "Austin"
Weather report: Austin
 \ / Sunny
 .-. 100-102 °F
 ? () ? ? 0 mph
 `-’ 9 mi
 / \ 0.0 in

Like modules, you can also update and uninstall scripts. Even better, you can publish
your own scripts. As with modules, the whole world will see your code, so make sure
it’s clean, well-documented, and includes all the other things we’ve talked about that
you should be doing as a professional toolmaker.

22.6.2 Creating ScriptFileInfo

Before you can publish a script, you need to create a special type of header that includes
all the necessary metadata such as tags, versioning, and requirements. You do this with
the New-ScriptFileInfo cmdlet. You can either append your script code to this file or
move the comment block to your script file. We’ll demonstrate by publishing one of Jeff
Hicks’s scripts that checks for module updates in the PowerShell Gallery:

PS C:\> New-ScriptFileInfo -Path C:\Work\PSReleaseTools.ps1 -Version 1.0.0
-Author 'Jeff Hicks' -Description 'Check for module updates from the
PowerShell gallery and create a comparison object' -Copyright 2017 -Tags
PowerShellget,Module,PSGallery

The filename must have a .ps1 file extension. Here’s the result—the headings should
be self-explanatory and are similar to what you’d use in a module manifest:

<#PSScriptInfo
.VERSION 1.0.0
.GUID 7da2acc6-30d8-4cc9-a3d9-ba645fceebb2
.AUTHOR Jeff Hicks
.COMPANYNAME
.COPYRIGHT 2023
.TAGS PowerShellget Module PSGallery
.LICENSEURI
.PROJECTURI
.ICONURI
.EXTERNALMODULEDEPENDENCIES
.REQUIREDSCRIPTS
.EXTERNALSCRIPTDEPENDENCIES
.RELEASENOTES
#>
<#

23922.6 Publishing scripts

.DESCRIPTION
 Check for module updates from the PowerShell Gallery and create a
comparison object
#>
Param()

Take everything except the Param() line and move it to the beginning of the script
file. We’ll clean it up a bit and verify that we haven’t messed up anything:

PS C:\> Test-ScriptFileInfo -Path C:\scripts\Check-ModuleUpdate.ps1 |
 select *
Name : Check-ModuleUpdate
Version : 1.0.0
Guid : 7da2acc6-30d8-4cc9-a3d9-ba645fceebb2
Path : C:\scripts\Check-ModuleUpdate.ps1
ScriptBase : C:\scripts
Description : Check for module updates from the PowerShell
 Gallery and create a comparison object
Author : Jeff Hicks
CompanyName :
Copyright : 2023
Tags : {PowerShellget, Module, PSGallery}
ReleaseNotes : {This code is described at
http://jdhitsolutions.com/blog/powershell/5…}
RequiredModules :
ExternalModuleDependencies :
RequiredScripts :
ExternalScriptDependencies :
LicenseUri :
ProjectUri : https://gist.github.com/jdhitsolutions/8a49...
IconUri :
DefinedCommands :
DefinedFunctions :
DefinedWorkflows :

We didn’t get any errors, so we’ll assume we’re good. Once you have something like
this, it’s simple to keep as a snippet or file that you can copy, paste, and modify as nec-
essary. Just be sure to generate a new GUID, using the New-Guid cmdlet, for each new
script you intend to publish.

22.6.3 Publishing the script

Publishing a script to the PowerShell Gallery also requires the API key. Once you’ve
updated the script file with the necessary metadata, you can easily publish it:

Publish-Script -Path C:\scripts\Check-ModuleUpdate.ps1 -NuGetApiKey
 $psgallerykey -Repository PSGallery

In less than a minute, the script will be available for download and installation:

PS C:\> find-script check-moduleupdate
WARNING: Unable to resolve package source ''.

240 CHAPTER 22 Publishing your script

WARNING: Cannot bind argument to parameter 'Path' because it is an empty
string.
Version Name Repository Description
------- ---- ---------- -----------
1.0.0 Check-ModuleUpdate PSGallery Check for module updates from ...

You may see a different version, depending on changes Jeff makes and republishes.

22.6.4 Managing published scripts

As is true for published modules, there are no commands in PowerShell for manag-
ing a published script. If you need to change the script, do so, and then edit the
script file-info header with a new version. You should be able to run Publish-Script
as you did before.

 For modules, you can also use the Manage My Items page on the PowerShell Gal-
lery website, as we showed you earlier. Scroll down the list until you find the script.
You’ll see that it has a Script type. As with modules, you can’t delete published items
but can hide previous versions. Follow the same steps as described earlier.

Summary
There’s no requirement that you publish or share your modules and scripts, but this is
a relatively painless process to make your beautiful code available to everyone who
needs it. In the long run, we think Microsoft will offer more guidance and tools for IT
pros to set up internal repositories, which makes sense. In the meantime, you can
become familiar with the process by publishing to the PowerShell Gallery.

Part 4

Welcome to the pinnacle of our scripting exploration—Advanced Tech-
niques. In this concluding part, we get into the intricacies of advanced scripting,
pushing the boundaries of our skills to new heights and exploring the most
advanced and best techniques that define mastery in the scripting domain.

 When we embark on chapter 23, we tackle the inevitable challenges of bugs
head-on. You’ll learn advanced techniques for bug identification, diagnosis,
and resolution, honing your skills to create functional and resilient scripts in
the face of complexities. In chapter 24, you’ll elevate the presentation of your
script outputs and explore advanced methods to enhance your script results’
visual appeal and usability, ensuring your audience receives clear and compel-
ling information. You’ll unravel the full potential of the.NET Framework in
chapter 25 while discovering advanced scripting techniques that use the capabil-
ities of the .NET Framework and expanding the horizons of what your scripts
can achieve. Next, we’ll dive into sophisticated data storage practices in chapter
26, and explore alternatives beyond Microsoft Excel as we delve into advanced
methods for storing and managing data, providing scalable solutions for your
scripting endeavors. Finally, in chapter 27, we’ll reflect on the endless possibili-
ties and continuous evolution in the scripting landscape. Scripting is an ever-
evolving journey, and this chapter serves as an inspiration to embrace the
dynamic nature of the scripting realm. As we navigate through these chapters,
you’ll not only master advanced techniques but also gain insights into the limit-
less potential of scripting. The chapters in Advanced Techniques are the culmi-
nation of our scripting expedition, equipping you with the skills to overcome
challenges, present your scripts with finesse, harness the power of the .NET

242 PART 4

Framework, explore innovative data storage methods, and embrace the perpetual
growth inherent in scripting. Let’s embark on this final stretch of our journey, where
the pursuit of mastery is never truly at an end.

243

Squashing bugs

No comprehensive scripting guide is complete without addressing the critical
topic of debugging. To put it bluntly, debugging can be frustrating. But don’t
worry—we’re here to offer valuable insights and practical tips to make debug-
ging more manageable.

23.1 The three kinds of bugs
In the world of scripting, bugs generally fall into three categories: syntax, results,
and logic bugs. Results bugs, a relatively new category, has emerged to help address
specific scenarios that often perplex scriptwriters. These bug families, in ascending
order of complexity, are as follows:

 Syntax bugs—You typed something wrong. Perhaps you typed ForEach instead
of Foreach Object, for example, or you forgot to close a { (curly bracket).
PowerShell will try to alert you to many syntax bugs by using a little red
squiggly underline thing. But there’s a more insidious class of syntax bugs
that PowerShell can’t help with: mistyping a variable name in a script—for
example, $CompuerName instead of $ComputerName —will create undesired
results, but PowerShell won’t be able to help by default. If you’re using
Visual Studio Code (VS Code), you may see a red squiggle under the vari-
able until you use it somewhere else in your script.

 Results bugs—A command produces something you don’t expect. For exam-
ple, if you expect Test-Connection SERVER1 to return $True when SERVER1
is online, you’ll be disappointed when it doesn’t, and the code which made
that assumption might not work as you expected.

244 CHAPTER 23 Squashing bugs

 Logic bugs—These are the trickiest to resolve because they don’t result in obvi-
ous errors. Logic bugs occur when your script’s commands execute without
error, but there’s a problem in how your code is structured or written. We’ll
dedicate most of this chapter to help you conquer logic bugs.

23.2 Dealing with syntax bugs
The simplest way to handle syntax bugs is to never make a typo and pay attention to
PowerShell’s red squiggly underlines, highlighting potential problems. Additionally, you
can enhance your script’s reliability by adding Set-StrictMode –Version 2.0 at the
script’s beginning. This command modifies PowerShell’s behavior in the following ways:

 You’re supposed to call PowerShell functions using a specific syntax. For example,
a function with three input parameters could be called by running My-Function 1
2 3, passing the values 1, 2, and 3 to the parameters in order. Newcomers sometimes
use a method-style syntax like My-Function(1,2,3), which passes a single array of
three elements to the first parameter. Strict mode disallows that and will throw an
error. You can avoid the problem by always using named parameters when calling a
function, as in My-Function –Param 1 –OtherParam 2 –ThirdParam 3.

 Referring to nonexistent properties of objects typically returns a $null value; in
strict mode, doing so produces an error. This will not solve the Select-Object
gotcha we described in the sidebar earlier—that condition is, as we noted, a
specific feature of the command.

 Referring to a variable that hasn’t been assigned a value in the current scope
will usually cause PowerShell to go up the scope tree to try and find the variable.
For example, referring to $ErrorActionPreference in a script works because the
global scope, rather than your local scope, contains that predefined variable. In
strict mode, this behavior changes. Referring to variables that haven’t yet been

An almost-fourth category: The PowerShell “gotcha”
A unique situation could be considered a blend of syntax and results bugs. Consider
the following command:

Get-CimInstance –ClassName Win32_OperatingSystem |
Select-Object –Prop PSHostName,Version,BuildNumber

This command runs without errors, but it produces output with one blank column. The
peculiar part is the PSHostName property requested with Select-Object. The Common
Information Model (CIM) class we’ve retrieved doesn’t have a PSHostName property.
PowerShell, however, can create new properties on the fly, which can be useful in many
situations. In this case, it has created a new property named PSHostName without any
content. You won’t get the expected results if you later rely on PSHostName having val-
ues. For now, let’s classify this as a results bug and refer you to section 23.3.

24523.4 Dealing with logic bugs

assigned a value in the current scope will produce an error. This helps avoid “I
mistyped the variable name—argh!” syntax errors.

We recommend using strict mode in all of your scripts. We don’t do so in all of our
sample and demo code, but that’s because they aren’t production-ready files.

23.3 Dealing with results bugs
To tackle results bugs, follow the scripting process we’ve advocated throughout this
book. Always begin by running individual commands directly in the console before
incorporating them into your scripts. This way, you can observe the output and estab-
lish reliable expectations based on concrete evidence. Although this may seem overly
simple, scriptwriters often overlook it in their haste to create code.

23.4 Dealing with logic bugs
Now, let’s delve into the most challenging category: logic bugs. We’ve uncovered a
straightforward rule that simplifies the process of identifying and fixing logic bugs:
logic errors occur when a property or variable contains something different from what
you assumed. To illustrate this concept, consider the script in listing 23.1, which con-
tains a function that’s supposed to get disk information using the Get-CimInstance
command.

TRY IT NOW Go ahead and grab this script from the downloadable code sam-
ples at http://mng.bz/rjgE and run it. It won’t hurt anything, but it also won’t
work correctly. If you’ve run into this problem yourself at some point, the rea-
son will be apparent, but we’ll use this as an example of the procedure we fol-
low to debug problems like this. We also aren’t annotating the code because
we want you to follow the debug process.

function Get-DiskInfo {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True)]
 [string[]]$ComputerName
)

Using the latest version
You might have noticed that the -Version parameter for Set-StrictMode also
offers a "Latest" option. While using "Latest" seems convenient, it’s essential to
consider the potential consequences. Currently, 2.0 is the latest documented ver-
sion, making it a safer choice. You can be confident that your code will work as
expected with version 2.0. If Microsoft introduces a 3.0 option, you may want to
revisit your code, as significant changes to PowerShell could accompany it.

Listing 23.1 A buggy script for you to consider

https://shortener.manning.com/rjgE

246 CHAPTER 23 Squashing bugs

 BEGIN {
 Set-StrictMode -Version 2.0
 }
 PROCESS {
 ForEach ($comp in $ComputerName) {
 $params = @{'ComputerName' = $comp
 'ClassName' = 'Win32_LogicalDisk'}
 $disks = Get-CimInstance @params
 ForEach ($disk in $disks) {
 $props = @{'ComputerName' = $comp
 'Size' = $disk.size
 'DriveType' = $disk.drivetype}
 if ($disk.drivetype -eq 'fixed') {
 $props.Add('FreeSpace',$disk.FreeSpace)
 } else {
 $props.Add('FreeSpace','N/A')
 }
 New-Object -TypeName PSObject -Property $props
 } #foreach disk
 } #foreach computer
 } #PROCESS
 END {}
}
Get-DiskInfo -ComputerName localhost

The problem with this script, as with all logic bugs, is that we have either a variable or
a property that contains something other than what we thought it did. In this particular
example, which is deliberately simple, this is a results-style bug. We wouldn’t be in this
pickle if we’d bothered to run the command at the console and see what it produced.
But in some scripts, you’re populating variables and properties with values that you’ve
calculated or constructed, so it’s more complex than running a command to see what
it produces. For this example, we’ll treat this as a pure logic bug and follow the proce-
dure for figuring those out.

 Suppose the core problem is a property or a variable not containing what you
expect. In that case, the fix is to determine which property or variable the code con-
tains and determine what the property or variable contains. We’re going to cover sev-
eral distinct methods for doing this.

NOTE With the advent of VS Code and PowerShell support therein, we’ve
changed our debugging approach. We don’t use Write-Debug anymore, nor, in
most interactive debugging cases like this, do we use Set-PSBreakpoint as
much. Those are still useful, and in more advanced books such as The PowerShell
Scripting & Toolmaking Book (https://leanpub.com/powershell-scripting-tool-
making), we get into their intricacies. However, we now rely on VS Code’s fea-
tures to begin debugging.

https://leanpub.com/powershell-scripting-toolmaking
https://leanpub.com/powershell-scripting-toolmaking

24723.4 Dealing with logic bugs

23.4.1 Setting breakpoints

A breakpoint lets you run a script to a specific place; the script will pause when it encoun-
ters the breakpoint. That pause lets you examine the script, check the contents of vari-
ables and properties, execute the script line by line, or resume normal execution.
Breakpoints are your core debugging tool, and they’re tremendously useful.

 We like to set a breakpoint just after we’ve set a variable’s contents or before we’re
about to rely on the contents of a variable or a property. Figure 23.1 shows our script
in VS Code; we’ve moved to line 17 and pressed F9 to toggle a breakpoint. It displays
as a red dot just to the left of the line number.

With the breakpoint set, we can press F5 to run the script and begin debugging. Fig-
ure 23.2 shows what happens when execution reaches line 17: a Debug pane opens on
the left side of the VS Code window, and the PowerShell terminal pane indicates that
we’ve hit a breakpoint. The script is paused, and line 17 is highlighted.

Figure 23.1 Setting a breakpoint in VS Code

248 CHAPTER 23 Squashing bugs

While the breakpoint is active, we can use that Terminal pane to examine things. For
example, we’ll run $disk to see what that variable currently contains. Figure 23.3
shows the result.

 Sharp-eyed readers will have spotted the problem: the DriveType property contains 3,
but our code clearly expected it to contain a string value such as 'fixed'. Let’s pretend for
a moment that you’re not sharp-eyed—we have another debugging trick up our sleeves.

TRY IT NOW This next bit is cooler to watch in person than in a book. We sug-
gest you get VS Code up and running, make sure the PowerShell extension is
active, and start a new file. Please save the file with a .ps1 filename extension
(so VS Code knows it’s PowerShell), and paste in the contents of listing 23.1.
Set a breakpoint on line 17 as we’ve done and run the script.

Figure 23.2 Hitting a breakpoint in VS Code

24923.4 Dealing with logic bugs

At line 17, the script is about to enter an If construct, where it will make a logical
decision. These decisions are often where logic bugs manifest themselves. The script
will decide whether it will create a FreeSpace property containing an actual free
space value or insert 'N/A' as that value. Press F11, the Step Into command; as shown
in figure 23.4, and the script will advance one line and pause again. You’re about to
execute the logic construct.

 Press F11 once more. The script jumps to line 23—you can visually observe the
logic’s outcome. That means $disk.drivetype doesn’t contain 'fixed'. You expected
it to—and so you’ve found the bug’s exact location. At this point, you can press Shift-F5
to stop debugging so that you can begin fixing the problem.

Figure 23.3 Checking out a variable’s contents when in debug mode

250 CHAPTER 23 Squashing bugs

It’s all about the expectations
We’ve skipped a somewhat valuable lesson—or saved it for this specific point.
Debugging is all about finding where your assumptions and expectations differ from
reality. The implication is that you have expectations. In other words, you must have
an idea of what your script will do. Debugging will let you observe whether it does
those things.

These are your expectations. When it comes time to debug, you’re merely comparing
reality to those expectations; where they differ, you’ve found your bug.

If you don’t have an expectation for what the script will do each step of the way, and
if you don’t have an expectation for what each variable and property will contain, then
you can’t debug.

Figure 23.4 Stepping into the next line of code during debugging

25123.4 Dealing with logic bugs

23.4.2 Setting watches

Because “what the variables and properties contain” is such a crucial part of debug-
ging, VS Code offers a feature called watches that focuses specifically on that part.
In VS Code, you can select Remove All Breakpoints from the Debug menu to give
yourself a clean slate. The Debug pane is still open, though—press Ctrl-Shift-D if
you accidentally closed it. Under the WATCH section, click the + icon (it won’t be
visible until you move your cursor over the WATCH section header). In the text
box that appears, type $disk, and press Enter. It would be best if you had some-
thing that looks like figure 23.5.

We see that the variable is currently 'unavailable', which makes sense because the
script isn’t running. We’ll re-enable the breakpoint on line 17, which is just after
$disk is defined in the ForEach loop, and then run the script.

23.4.3 So much more

VS Code uses PowerShell’s PSBreakpoint commands to provide these debugging fea-
tures. There’s more to explore beyond what we’ve covered in this chapter. Please read
the help documentation for VS Code to learn about the additional capabilities it
offers for debugging. While the techniques we’ve introduced are fundamental, they
provide a solid foundation for squashing bugs in your scripts.

Figure 23.5 Adding a watch for $disk

252 CHAPTER 23 Squashing bugs

 But you knew it was a Win32_LogicalDisk. The subsequent use of the $disk vari-
able is to check the Size and DriveType properties on line 17, as shown in figure 23.6.
Double-click the watch to edit it. Add .drivetype to the end of $disk; as figure 23.7
shows, on our system, we see that DriveType is 3.

The benefit of these watches is that you can press F5 again to run the script until it re-
encounters the line 17 breakpoint. On our computer, we’d see DriveType change
to 5—you’ll likely have something different, based on your computer’s configuration.
And rather than having to type out $disk.drivetype every time, you can quickly refer
to the watches and see what all of your variables are doing.

Figure 23.6 Watching $disk reveals what’s in the variable at this moment.

25323.4 Dealing with logic bugs

23.4.4 Don’t be lazy

After all that, you may be thinking, “That’s a lot of work.” What’s even more work is
trying to spot a problem by reading the code or making random guesses about what
might be wrong. And we’ve seen real people do exactly that. Take the time to learn
the process and your editor’s debugging features. It may take forever, but it’s still a
faster process than debugging by chance.

 Oh, and make sure you make only one change at a time. Don’t change five things
at once because you won’t know which change solves your problem and you’ll risk
introducing more bugs. Change one thing, then test. If it solves your bug, great. If
not, change your code back, and try something else. In addition, be prepared that you
might have multiple bugs but not see all of them until the first one or two are fixed.

Figure 23.7 Modifying the watch to focus on a specific property

254 CHAPTER 23 Squashing bugs

23.5 Your turn
With these few techniques, believe it or not, you’re equipped to handle most of the
logic bugs you’ll write into a PowerShell script. But don’t take our word for it—use
your new debugging skills.

23.5.1 Start here
Listing 23.2 is a buggy script. That’s right, it won’t run as is. We know that—it’s the
whole point of this exercise. We don’t want you to run the script—for now, get it into
VS Code, where you can look at it. Save it as a file with a .ps1 filename extension, or VS
Code’s PowerShell magic won’t activate.

Function Get-DiskCheck {
 [cmdletbinding(DefaultParameterSetName = "name")]
 Param(
 [Parameter(Position = 0, Mandatory,
 HelpMessage = "Enter a computer name to check",
 ParameterSetName = "name",
 ValueFromPipeline)]
 [Alias("cn")]
 [ValidateNotNullorEmpty()]
 [string[]]$ComputerName,
 [Parameter(Mandatory,
 HelpMessage = "Enter the path to a text file of the computer
 names",
 ParameterSetName = "file"
)]
 [ValidateScript({
 if (Test-Path $_) {
 $True
 }
 else {
 Throw "Cannot validate path $_"
 }
 })]
 [ValidatePattern("\.txt$")]
 [string]$Path,
 [ValidateRange(10, 50)]
 [int]$Threshhold = 25,
 [ValidateSet("C:", "D:", "E:", "F:")]
 [string]$Drive = "C:",
 [switch]$Test
)
 Begin {
 Write-Verbose "[BEGIN] Starting: $($MyInvocation.Mycommand)"
 $cimParam = @{
 Classname = "Win32_LogicalDisk"
 Filter = "DeviceID='$Drive'"
 Computername = $Null
 ErrorAction = "Stop"
 }

Listing 23.2 A buggy script that awaits your debugging skills

25523.5 Your turn

 } #begin
 Process {
 if ($PSCmdlet.ParameterSetName = 'name') {
 $names = $Computernme
 }
 else {
 #get list of names and trim off any extra spaces
 Write-Verbose "[PROCESS] Importing names from $path"
 $names = Get-Content -Path $path | Where {$_ -match "\w+"} |
 foreach {$_.Trim()}
 }
 if ($test) {
 Write-Verbose "[PROCESS] Testing connectivity"
 #ignore errors for offline computers
 $names = $names | Where {Test-WSMan $_ -ErrorAction
 SilentlyContinue}
 }
 foreach ($computer in $names) {
 $cimParam.ComputerName = $Computer
 Write-Verbose "[PROCESS] Querying $($computer.toUpper())"
 Try {
 $data = Get-Ciminstance @cimParam
 #write custom results to the pipeline
 $data | Select ComputerName,
 DeviceID, Size, Freespace,
 @{Name = "PctFree"; Expression =
 {[math]:Round(($_.freespace / $_.size) * 100, 2)}},
 @{Name = "OK"; Expression = {
 [int]$p = ($_.freespace / $_.size) * 100
 if ($p -ge $Threshhold) {
 $True
 }
 else {
 $false
 }
 }
 }, @{Name = "Date"; Expression = {(Get-Date)}}
 }
 Catch {
 Write-Warning "[$($computer.toUpper())] Failed.
 $($_.Exception.message)"
 }
 } #foreach computer
 } #process
 End {
 Write-Verbose "[END] Ending: $($MyInvocation.Mycommand)"
 } #end
}

23.5.2 Your task

Begin by reading the script. What will it do? What will each variable contain along the
way? What will the various properties contain? You may spot several bugs in your

256 CHAPTER 23 Squashing bugs

read-through—we’ve included both logic and syntax bugs for your debugging plea-
sure. Don’t assume you’ve found all the bugs by reading the script.

 Once you’re finished with the read-through, debug the script. Use the techniques
introduced in this chapter and see whether you can produce a flawless version that
runs perfectly.

23.5.3 Our take

This chapter is much more about the procedure than the code, but to ensure you
found everything, the following listing shows the corrected script. Looking for a fun
bonus exercise? We didn’t annotate the listing; instead, try using Compare-Object to
compare listings 23.2 and 23.3, or compare your corrected script to either one of
those to see what changed between them.

Function Get-DiskCheck {
 [cmdletbinding(DefaultParameterSetName = "name")]
 Param(
 [Parameter(Position = 0, Mandatory,
 HelpMessage = "Enter a computer name to check",
 ParameterSetName = "name",
 ValueFromPipeline)]
 [Alias("cn")]
 [ValidateNotNullorEmpty()]
 [string[]]$ComputerName,
 [Parameter(Mandatory,
 HelpMessage = "Enter the path to a text file of the computer
 names",
 ParameterSetName = "file"
)]
 [ValidateScript({
 if (Test-Path $_) {
 $True
 }
 else {
 Throw "Cannot validate path $_"
 }
 })]
 [ValidatePattern("\.txt$")]
 [string]$Path,
 [ValidateRange(10, 50)]
 [int]$Threshhold = 25,
 [ValidateSet("C:", "D:", "E:", "F:")]
 [string]$Drive = "C:",
 [switch]$Test
)
 Begin {
 Write-Verbose "[BEGIN] Starting: $($MyInvocation.Mycommand)"
 $cimParam = @{
 Classname = "Win32_LogicalDisk"
 Filter = "DeviceID='$Drive'"

Listing 23.3 Buggy script, completely debugged

25723.5 Your turn

 ComputerName = $Null
 ErrorAction = "Stop"
 }
 } #begin
 Process {
 if ($PSCmdlet.ParameterSetName -eq 'name') {
 $names = $ComputerName
 }
 else {
 #get list of names and trim off any extra spaces
 Write-Verbose "[PROCESS] Importing names from $path"
 $names = Get-Content -Path $path | Where {$_ -match "\w+"} |
 foreach {$_.Trim()}
 }
 if ($test) {
 Write-Verbose "[PROCESS] Testing connectivity"
 #ignore errors for offline computers
 $names = $names | Where {Test-WSMan $_ -ErrorAction
 SilentlyContinue}
 }
 foreach ($computer in $names) {
 $cimParam.ComputerName = $Computer
 Write-Verbose "[PROCESS] Querying $($computer.toUpper())"
 Try {
 $data = Get-Ciminstance @cimParam
 #write custom results to the pipeline
 $data | Select PSComputerName,
 DeviceID, Size, Freespace,
 @{Name = "PctFree"; Expression =
 {[math]::Round(($_.freespace / $_.size) * 100, 2)}},
 @{Name = "OK"; Expression = {
 [int]$p = ($_.freespace / $_.size) * 100
 if ($p -ge $Threshhold) {
 $True
 }
 else {
 $false
 }
 }
 }, @{Name = "Date"; Expression = {(Get-Date)}}
 }
 Catch {
 Write-Warning "[$($computer.toUpper())] Failed.
 $($_.Exception.message)"
 }
 } #foreach computer
 } #process
 End {
 Write-Verbose "[END] Ending: $($MyInvocation.Mycommand)"
 } #end
}

258 CHAPTER 23 Squashing bugs

Summary
By the end of this chapter, you gained valuable insights into debugging PowerShell
scripts, which is an essential skill for any scriptwriter. We covered the three main types
of bugs: syntax, results, and logic bugs, with a focus on addressing logic bugs, which
are often the most challenging to resolve. By using techniques like setting breakpoints
and watches in your preferred integrated development environment, such as Visual
Studio Code (VS Code), you can efficiently identify and fix bugs in your scripts.
Remember, debugging is all about comparing your expectations with reality, and with
practice, you’ll become adept at squashing bugs in your PowerShell scripts. Now, put
your newfound debugging skills to the test by tackling the buggy script provided in
this chapter and see how well you can debug it using the techniques you learned.

259

Enhancing script
output presentation

Throughout this book, our guiding principle has been to help you create tools that
excel in doing one thing and one thing only. These tools remain agnostic to the
origins of their input as long as it can be seamlessly channeled to a parameter. Sim-
ilarly, tools don’t concern themselves with the destination or purpose of their out-
put. Consequently, they don’t focus on creating beautifully formatted output. You
can rely on the built-in Format- cmdlets or Select-Object to enhance the aesthet-
ics or cater to management preferences. However, in this chapter, we’ll delve into
two advanced techniques for elevating the visual appeal of your output and surpass-
ing the capabilities of Format- commands.

24.1 Our starting point
We’ll start with the following code, which we copied from the end of chapter 17.

function Get-DiskInfo {
 foreach ($domain in (Get-ADForest).domains) {
 $hosts = Get-ADDomainController -filter * -server $domain |
 Sort-Object -Prop hostname
 ForEach ($h in $hosts) {
 $cs = Get-CimInstance -ClassName Win32_ComputerSystem `
 # -ComputerName $h
 $props = @{'ComputerName' = $h
 'DomainController' = $h
 'Manufacturer' = $cs.manufacturer
 'Model' = $cs.model
 'TotalPhysicalMemory(GB)'=$cs.totalphysicalmemory / 1GB
 }

Listing 24.1 Starting point for this chapter

260 CHAPTER 24 Enhancing script output presentation

 New-Object -Type PSObject -Prop $props
 } #foreach $h
 } #foreach $domain
} #function
Export-ModuleMember -function Get-DiskInfo

Save this as a new module named Test.psm1, which means it’s in a folder also named
Test under the Documents/PowerShell/Modules folder. Thus, the complete filename
is Documents/PowerShell/Modules/Test/Test.psm1. Got all that?

 As is, the output isn’t fantastic looking. The code has five properties, which
exceeds the property count of four that lets PowerShell create a table by default. That
means the output is, by default, returned as a list:

PS C:\> get-diskinfo
DomainController : SRV1
ComputerName : SRV1
Model : Virtual Machine
Manufacturer : Microsoft Corporation
TotalPhysicalMemory(GB) : 31.5475044250488

We don’t like it. Maybe you want a table or specific default properties. But you know not
to build any formatting into the command itself because that would break the excellent
rules those two great PowerShell guys laid down in their scripting book, right?

24.2 Creating a default view
Instead, let’s take advantage of the formatting system built into PowerShell. The goal
is to have your command output always display as a table without using any additional
commands to make that happen (e.g., piping to Format-Table). You’ll create a default
view, which PowerShell’s formatting subsystem will use automatically to render the
command output. You’ll only change the visual representation of the command’s out-
put—you won’t modify the actual output objects in any way.

24.2.1 Exploring Microsoft’s views

Nearly every native core command you run in PowerShell has a default view defined
already. Run cd $pshome in PowerShell to switch to PowerShell’s home folder, and
then run Dir. You’ll see several files with a. format.ps1xml filename extension. These
are the ones we’re after because they’re where Microsoft defines the default views for
the shell’s core commands.

Lies and mysteries
Hopefully, you’re aware that these default views can make it seem like PowerShell is
lying sometimes. For example, running Get-EventLog system -newest 10 displays a
neatly formatted table (try it!), but some of the column names are different from the
underlying property names. When looking at a predefined list or table, the headers are
defined in the view and don’t necessarily represent the underlying objects. When you run

26124.2 Creating a default view

The file to open—in Notepad, Visual Studio Code (VS Code), or your favorite editor,
as you prefer—is dotnettypes.format.ps1xml. There are other format files, but this big-
gie contains the views for most of the core object types PowerShell works with. Let’s
walk through a bit of it, because you’ll be copying from it. It starts like this:

<?xml version="1.0" encoding="utf-8" ?>
<!-- ***
These sample files contain formatting information used by the Windows
PowerShell engine. Do not edit or change the contents of this file
directly. Please see the PowerShell documentation or type
Get-Help Update-FormatData for more information.
Copyright (c) Microsoft Corporation. All rights reserved.
THIS SAMPLE CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY
OF ANY KIND,WHETHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR
PURPOSE. IF THIS CODE AND INFORMATION IS MODIFIED, THE ENTIRE RISK OF USE
OR RESULTS IN CONNECTION WITH THE USE OF THIS CODE AND INFORMATION
REMAINS WITH THE USER.
** -->
<Configuration>
<ViewDefinitions>

The first line and last two lines are essential for making your file. Start up a new file in
VS Code right now, and copy and paste those three lines at the top of the new file.

Get-Process, the numbers you see are calculated by the default view; the underlying
data is in bytes, not kilobytes, megabytes, or whatever. Views are visual, and you
have to be careful about relying on them as descriptors of the actual data in play.

You can do the same sort of lying when you create views. Don’t want the table header
to be ComputerName? No problem—you can have it show up as Mandolin if you want.
This will create no end of confusion for anyone using your command because they
might try to run something like Get-Whatever | Select-Object mandolin, only to
get a blank column as the output because there’s no actual “mandolin” property.
This continues a fine tradition of PowerShell being a little sneaky.

We should also point out that we’re about to mess with XML files with no formal defi-
nition or document type declaration (DTD). This is allegedly because Microsoft wants
the freedom to tinker with this system in the future (although it never has in 15+
years); if Microsoft doesn’t document the file formats, you can’t complain if they
change on you one day (or so goes the theory). Frankly, we’ve seen the formatting
subsystem’s code (PowerShell is open source now, remember!), and we’d be more
willing to believe that the company is a little embarrassed by it all and doesn’t want
to document it because it brings up painful memories. What documentation does
exist is at http://mng.bz/QBX0, and good luck with that—it’s terse.

We document this stuff more thoroughly in PowerShell in Depth, if you’re interested
(Manning, 2014; http://mng.bz/xjzq). This chapter will serve more as a tutorial than
a comprehensive look at what you can accomplish.

http://mng.bz/QBX0
https://shortener.manning.com/xjzq

262 CHAPTER 24 Enhancing script output presentation

Save the new file in the same folder as your .psm1 file (assuming you’re following
along with us). Name it TestViews.format.ps1xml. Saving it will cue VS Code to provide
the correct syntax coloring for XML, which is what this is. Go ahead and finish the file
by closing those two opening tags:

<?xml version="1.0" encoding="utf-8" ?>
<Configuration>
<ViewDefinitions>
</ViewDefinitions>
</Configuration>

Everything in XML comes in paired sets of tags, and each pair needs to be nested
within another pair. The opening <?xml ?> bit isn’t a tag; it’s a document definition,
so there’s only one of those.

 Everything else in the file consists of <View></View> sections. Each of these is a
view, as the tag name implies, and defines a single way of displaying a single kind of
object. Here’s one as an example:

<View>
<Name>System.CodeDom.Compiler.CompilerError</Name>
<ViewSelectedBy>
<TypeName>System.CodeDom.Compiler.CompilerError</TypeName>
</ViewSelectedBy>
<ListControl>
<ListEntries>
<ListEntry>
<ListItems>
<ListItem>
<PropertyName>ErrorText</PropertyName>
</ListItem>
<ListItem>
<PropertyName>Line</PropertyName>
</ListItem>
<ListItem>
<PropertyName>Column</PropertyName>
</ListItem>
<ListItem>
<PropertyName>ErrorNumber</PropertyName>
</ListItem>
<ListItem>
<PropertyName>LineSource</PropertyName>
</ListItem>
</ListItems>
</ListEntry>
</ListEntries>
</ListControl>
</View>

Let’s break this down:

 The view has a name. These are often object-type names, but that’s not required.
Frankly, the idea of views having a name you could refer to never played out. The

Name of the view

Optional selection
criteria

View type

List definition

26324.2 Creating a default view

idea was that a single object type could have multiple view options and that by
using the Format- commands, you could tell PowerShell which one to use. But
there’s no way to list them all, and the idea never went anywhere.

 A particular object type name selects the view. This is important! Right now, the
command is producing objects of the type System.PSCustomObject. That’s a
commonly used type, and it’s not unique to this command—which is a prob-
lem. You can only make a view if your command produces an object having a
unique type. You’ll have to fix this in your command.

 This example shows a list-type view as opposed to a table-type view.
 The list view consists of list entries, and each entry includes a list item. In this

example, they specify the property names to display in the list.

TRY IT NOW Scroll through the file and examine some of the other types of
views and other elements—besides property names—that they include. Notice
that table controls, in particular, are more complex, including an entire sec-
tion just for the column headers, followed by sections for what those columns
will contain.

24.2.2 Adding a custom type name to output objects

You know you need to modify the code. The following listing shows that change.

function Get-DiskInfo {
 foreach ($domain in (Get-ADForest).domains) {
 $hosts = Get-ADDomainController -filter * -server $domain |
 Sort-Object -Prop hostname
 ForEach ($h in $hosts) {
 $cs = Get-CimInstance -ClassName Win32_ComputerSystem -ComputerName $h
 $props = @{'ComputerName' = $h
 'DomainController' = $h
 'Manufacturer' = $cs.manufacturer
 'Model' = $cs.model
 'TotalPhysicalMemory(GB)'=$cs.totalphysicalmemory / 1GB
 }
 $obj = New-Object -Type PSObject -Prop $props
 $obj.psobject.typenames.insert(0,'Toolmaking.DiskInfo')
 Write-Output $obj
 } #foreach $h
 } #foreach $domain
} #function
Export-ModuleMember -function Get-DiskInfo

This isn’t a major change: you saved the output object into a variable, $obj, rather
than immediately emitting it to the pipeline. You then insert a type name, Toolmaking
.DiskInfo, and place the object into the pipeline. The new type name will replace
the original generic type name.

Listing 24.2 Adding a custom type name to an object

Saves the
object to
a variable

Inserts a new
type name

264 CHAPTER 24 Enhancing script output presentation

24.2.3 Creating a new view file

The next listing shows the start of the new view file. Notice that we found a table view
we like the look of to use as a starting point.

<?xml version="1.0" encoding="utf-8" ?>
<Configuration>
<ViewDefinitions>
<View>
<Name>System.Reflection.Assembly</Name>
<ViewSelectedBy>
<TypeName>System.Reflection.Assembly</TypeName>
</ViewSelectedBy>
<TableControl>
<TableHeaders>
<TableColumnHeader>
<Label>GAC</Label>
<Width>6</Width>
</TableColumnHeader>
<TableColumnHeader>
<Label>Version</Label>
<Width>14</Width>
</TableColumnHeader>
<TableColumnHeader/>
</TableHeaders>
<TableRowEntries>
<TableRowEntry>
<TableColumnItems>
<TableColumnItem>
<PropertyName>GlobalAssemblyCache</PropertyName>
</TableColumnItem>
<TableColumnItem>
<PropertyName>ImageRuntimeVersion</PropertyName>

Selecting a type name
.NET Framework’s type-naming conventions are designed to make each type name
universally unique. You wouldn’t want to add a custom type name such as “System
.DiskInfo” because, for all you know, it either already exists or could exist in the
future. System is considered a namespace, and it’s “owned” by Microsoft. Every-
thing starting with System. is under Microsoft control, and you shouldn’t intrude into
the company’s playground.

We essentially defined a new Toolmaking namespace, under which we have free
reign to create whatever we want—and you should do the same, perhaps using a
form of your organization’s name as the top-level namespace. If you work in IT oper-
ations and are specifically on the Storage team, maybe you’d select MyCompany
.ITOps.Storage.DiskInfo as your custom type name in this example. The idea is
to create a hierarchy that allows individual groups to have complete control over their
own namespace without fear of overlapping each other.

Listing 24.3 Starting a new view file

Table definition

Defines table
headers

Singleton tag

Corresponding values

26524.2 Creating a default view

</TableColumnItem>
<TableColumnItem>
<PropertyName>Location</PropertyName>
</TableColumnItem>
</TableColumnItems>
</TableRowEntry>
</TableRowEntries>
</TableControl>
</View>
</ViewDefinitions>
</Configuration>

You have some work to do, like adding the custom type name and arranging the table
the way you like. But we want to call your attention to this line in particular:

<TableColumnHeader/>

This is a sneaky XML thing that Microsoft often uses, and it will mess you up. Remem-
ber how we said that XML elements come in pairs? Well, that’s not always true. This
singleton tag both opens and closes itself—that’s what the slash at the end means. It’s
exactly the same as

<TableColumnHeader>
</TableColumnHeader>

Go count the number of table column headers in the file right now. It would help if
you came up with three. The number of table column entries must match! If they
don’t, the view won’t load into the shell. Those singleton tags, however, can be super
easy to miss when you’re copying and pasting, resulting in a broken formatting file, so,
watch for them. They mean, “I want a column here, but I don’t want to specify any-
thing for the header—just use the underlying property name and figure out the width
on your own, thanks.” Here’s the finalized file.

<?xml version="1.0" encoding="utf-8" ?>
<Configuration>
<ViewDefinitions>
<View>
<Name>DiskInfo</Name>
<ViewSelectedBy>
<TypeName>Toolmaking.DiskInfo</TypeName>
</ViewSelectedBy>
<TableControl>
<TableHeaders>
<TableColumnHeader>
<Label>Host</Label>
<Width>16</Width>
</TableColumnHeader>
<TableColumnHeader>
<Label>DC</Label>

Listing 24.4 Final view file

View name

Uses the custom
type name

Table headers

266 CHAPTER 24 Enhancing script output presentation

<Width>16</Width>
</TableColumnHeader>
<TableColumnHeader>
<Label>Model</Label>
</TableColumnHeader>
<TableColumnHeader>
<Label>RAM</Label>
<Alignment>Right</Alignment>
</TableColumnHeader>
</TableHeaders>
<TableRowEntries>
<TableRowEntry>
<TableColumnItems>
<TableColumnItem>
<PropertyName>ComputerName</PropertyName>
</TableColumnItem>
<TableColumnItem>
<PropertyName>DomainController</PropertyName>
</TableColumnItem>
<TableColumnItem>
<PropertyName>Model</PropertyName>
</TableColumnItem>
<TableColumnItem>
<PropertyName>TotalPhysicalMemory(GB)</PropertyName>
</TableColumnItem>
</TableColumnItems>
</TableRowEntry>
</TableRowEntries>
</TableControl>
</View>
</ViewDefinitions>
</Configuration>

We’ve made liberal use of carriage returns to complete the sections and make them
easier to perceive, but there’s still some unintentional word-wrapping in the book. We
suggest opening the XML file in a text editor or VS Code to review it. Here are some
notes to consider:

 You provide a name (which must only be unique for each type name; it’s fine if
there’s a view with this same name for another type) and the custom type name.

 You can ensure the same number of column headers and entries by not using
those annoying singleton tags.

 You specify a right alignment for the numeric RAM column.
 The column headers don’t match the underlying property names. That’s because

the property names are too darn long—there’s no way you can make a great-
looking display with those long names.

The big takeaway here is that we didn’t do a good job of designing the tool. Look at that
property—TotalPhysicalMemory(GB)—and you’ll see it isn’t very pleasant. We only did
that so the default output of the tool would look nice, and we shouldn’t have cared. We’ve
made an awkward-looking, difficult-to-refer-to property that will be difficult to type forever.

Forces this
column to
align right

Table values

26724.2 Creating a default view

 Let’s change the code. Listing 24.5 includes the new code, and listing 24.6 shows
the revised view file to go with it. This was designed explicitly to illustrate why worry-
ing about appearance from inside a tool is a bad idea and the importance of fixing
mistakes like these when you realize you’ve made them.

function Get-DiskInfo {
 foreach ($domain in (Get-ADForest).domains) {
 $hosts = Get-ADDomainController -filter * -server $domain |
 Sort-Object -Prop hostname
 ForEach ($h in $hosts) {
 $cs = Get-CimInstance -ClassName Win32_ComputerSystem -ComputerName $h
 $props = @{'ComputerName' = $h
 'DomainController' = $h
 'Manufacturer' = $cs.manufacturer
 'Model' = $cs.model
 'TotalPhysicalMemory'=$cs.totalphysicalmemory / 1GB
 }
 $obj = New-Object -Type PSObject -Prop $props
 $obj.psobject.typenames.insert(0,'Toolmaking.DiskInfo')
 Write-Output $obj
 } #foreach $h
 } #foreach $domain
} #function
Export-ModuleMember -function Get-DiskInfo

<?xml version="1.0" encoding="utf-8" ?>
<Configuration>
<ViewDefinitions>
<View>
<Name>DiskInfo</Name>
<ViewSelectedBy>
<TypeName>Toolmaking.DiskInfo</TypeName>
</ViewSelectedBy>
<TableControl>
<TableHeaders>
<TableColumnHeader>
<Label>Host</Label>
<Width>16</Width>
</TableColumnHeader>
<TableColumnHeader>
<Label>DC</Label>
<Width>16</Width>
</TableColumnHeader>
<TableColumnHeader>
<Label>Model</Label>
</TableColumnHeader>
<TableColumnHeader>
<Label>RAM</Label>
<Alignment>Right</Alignment>

Listing 24.5 Revised tool code

Listing 24.6 Revised view

268 CHAPTER 24 Enhancing script output presentation

</TableColumnHeader>
</TableHeaders>
<TableRowEntries>
<TableRowEntry>
<TableColumnItems>
<TableColumnItem>
<PropertyName>ComputerName</PropertyName>
</TableColumnItem>
<TableColumnItem>
<PropertyName>DomainController</PropertyName>
</TableColumnItem>
<TableColumnItem>
<PropertyName>Model</PropertyName>
</TableColumnItem>
<TableColumnItem>
<PropertyName>TotalPhysicalMemory</PropertyName>
</TableColumnItem>
</TableColumnItems>
</TableRowEntry>
</TableRowEntries>
</TableControl>
</View>
</ViewDefinitions>
</Configuration>

That feels much better!

24.2.4 Adding the view file to a module

You’ve already saved the view file in the same folder as your module’s .psm1 file. But
that won’t magically tell PowerShell to use the view file. Instead, you need to create a
module manifest, just as you’ve done previously, and save it as Test.psd1 (because Test
is the module’s name). When creating the manifest, you need to specify the format
view. Or, if you’ve already created a manifest, you can add the format view to it. Let’s
take the latter approach so you can see how it’s done. Run this command:

new-modulemanifest -Path test.psd1 -RootModule test.psm1

This creates the .psd1 file but doesn’t specify the view. Open it, and edit it as shown in
the following listing.

#
Module manifest for module 'test'
#
Generated by: User
#
Generated on: 09/24/2023
#
@{
Script module or binary module file associated with this manifest.
RootModule = 'test.psm1'

Listing 24.7 Completed module manifest

26924.2 Creating a default view

Version number of this module.
ModuleVersion = '1.0'
Supported PSEditions
CompatiblePSEditions = @()
ID used to uniquely identify this module
GUID = 'e2baeaab-4dc7-4eda-a8a8-ad38298e3af0'
Author of this module
Author = 'User'
Company or vendor of this module
CompanyName = 'Unknown'
Copyright statement for this module
Copyright = '(c) 2023 User. All rights reserved.'
Description of the functionality provided by this module
Description = ''
Minimum version of the PowerShell engine required by this module
PowerShellVersion = ''
Name of the PowerShell host required by this module
PowerShellHostName = ''
Minimum version of the PowerShell host required by this module
PowerShellHostVersion = ''
Minimum version of Microsoft .NET Framework required by this module. This
prerequisite is valid for the PowerShell Desktop edition only.
DotNetFrameworkVersion = ''
Minimum version of the common language runtime (CLR) required by this
module. This prerequisite is valid for the PowerShell Desktop edition only.
CLRVersion = ''
Processor architecture (None, X86, Amd64) required by this module
ProcessorArchitecture = ''
Modules that must be imported into the global environment prior to
importing this module
RequiredModules = @()
Assemblies that must be loaded prior to importing this module
RequiredAssemblies = @()
Script files (.ps1) that are run in the caller's environment prior to
importing this module.
ScriptsToProcess = @()
Type files (.ps1xml) to be loaded when importing this module
TypesToProcess = @()
Format files (.ps1xml) to be loaded when importing this module
FormatsToProcess = @('./TestView.format.ps1xml')
Modules to import as nested modules of the module specified in
RootModule/ModuleToProcess
NestedModules = @()
Functions to export from this module, for best performance, do not use
wildcards and do not delete the entry, use an empty array if there are no
functions to export.
FunctionsToExport = '*'
Cmdlets to export from this module, for best performance, do not use
wildcards and do not delete the entry, use an empty array if there are no
cmdlets to export.
CmdletsToExport = '*'
Variables to export from this module
VariablesToExport = '*'
Aliases to export from this module, for best performance, do not use
wildcards and do not delete the entry, use an empty array if there are no

270 CHAPTER 24 Enhancing script output presentation

aliases to export.
AliasesToExport = '*'
DSC resources to export from this module
DscResourcesToExport = @()
List of all modules packaged with this module
ModuleList = @()
List of all files packaged with this module
FileList = @()
Private data to pass to the module specified in
RootModule/ModuleToProcess. This may also contain a PSData hashtable with
additional module metadata used by PowerShell.
PrivateData = @{
 PSData = @{
 # Tags applied to this module. These help with module discovery in
online galleries.
 # Tags = @()
 # A URL to the license for this module.
 # LicenseUri = ''
 # A URL to the main website for this project.
 # ProjectUri = ''
 # A URL to an icon representing this module.
 # IconUri = ''
 # ReleaseNotes of this module
 # ReleaseNotes = ''
 } # End of PSData hashtable
} # End of PrivateData hashtable
HelpInfo URI of this module
HelpInfoURI = ''
Default prefix for commands exported from this module. Override the
default prefix using Import-Module -Prefix.
DefaultCommandPrefix = ''
}

If you’re having trouble spotting it, this is all we changed:

Format files (.ps1xml) to be loaded when importing this module
FormatsToProcess = @('./TestView.format.ps1xml')

We uncommented the FormatsToProcess line and added the TestView.format.ps1xml
file, which—based on this—is in the same folder as the .psd1 and .psm1 files. With
everything in place, you should be able to run the command and see the new view as
its default output:

PS C:\> get-diskinfo
Host DC Model RAM
---- -- ----- ---
SRV1 SERV Virtual Machine 1.99906539916992

24.3 Your turn
We want to give you a chance to run through this independently. We’ll provide you
with a tool and then ask you to make a custom view for it.

27124.3 Your turn

24.3.1 Start here

The next listing shows a PowerShell tool. This should work fine (and should look
familiar because we used it earlier); you need to create a custom view for it. That also
means saving it as a module.

function Get-MachineInfo {
 [CmdletBinding()]
 Param(
 [Parameter(ValueFromPipeline=$True,
 Mandatory=$True)]
 [Alias('CN','MachineName','Name')]
 [string[]]$ComputerName
)
 BEGIN {}
 PROCESS {
 foreach ($computer in $ComputerName) {

 $session = New-CimSession -ComputerName $computer `
 -SessionOption $option
 # Query data
 $os_params = @{'ClassName'='Win32_OperatingSystem'
 'CimSession'=$session}
 $os = Get-CimInstance @os_params
 $cs_params = @{'ClassName'='Win32_ComputerSystem'
 'CimSession'=$session}
 $cs = Get-CimInstance @cs_params
 $sysdrive = $os.SystemDrive
 $drive_params = @{'ClassName'='Win32_LogicalDisk'
 'Filter'="DeviceId='$sysdrive'"
 'CimSession'=$session}
 $drive = Get-CimInstance @drive_params
 $proc_params = @{'ClassName'='Win32_Processor'
 'CimSession'=$session}
 $proc = Get-CimInstance @proc_params |
 Select-Object -first 1
 # Close session
 $session | Remove-CimSession
 # Output data
 $props = @{'ComputerName'=$computer
 'OSVersion'=$os.version
 'SPVersion'=$os.servicepackmajorversion
 'OSBuild'=$os.buildnumber
 'Manufacturer'=$cs.manufacturer
 'Model'=$cs.model
 'Procs'=$cs.numberofprocessors
 'Cores'=$cs.numberoflogicalprocessors
 'RAM'=($cs.totalphysicalmemory / 1GB)
 'Arch'=$proc.addresswidth
 'SysDriveFreeSpace'=$drive.freespace}
 $obj = New-Object -TypeName PSObject -Property $props
 Write-Output $obj

Listing 24.8 Starting-point script

272 CHAPTER 24 Enhancing script output presentation

 } #foreach
} #PROCESS
END {}
} #function

24.3.2 Your task

We want your custom view to include five columns: ComputerName, OSVersion,
Model, Cores, and RAM. Use the original property names for all columns rather than
making up different column headers.

24.3.3 Our take

The following listing shows our modified tool—we needed to add the custom type name.

function Get-MachineInfo {
 [CmdletBinding()]
 Param(
 [Parameter(ValueFromPipeline=$True,
 Mandatory=$True)]
 [Alias('CN','MachineName','Name')]
 [string[]]$ComputerName
)
 BEGIN {}
 PROCESS {
 foreach ($computer in $ComputerName) {

 # Connect session
 $session = New-CimSession -ComputerName $computer `
 -SessionOption $option
 # Query data
 $os_params = @{'ClassName'='Win32_OperatingSystem'
 'CimSession'=$session}
 $os = Get-CimInstance @os_params
 $cs_params = @{'ClassName'='Win32_ComputerSystem'
 'CimSession'=$session}
 $cs = Get-CimInstance @cs_params
 $sysdrive = $os.SystemDrive
 $drive_params = @{'ClassName'='Win32_LogicalDisk'
 'Filter'="DeviceId='$sysdrive'"
 'CimSession'=$session}
 $drive = Get-CimInstance @drive_params
 $proc_params = @{'ClassName'='Win32_Processor'
 'CimSession'=$session}
 $proc = Get-CimInstance @proc_params |
 Select-Object -first 1
 # Close session
 $session | Remove-CimSession
 # Output data
 $props = @{'ComputerName'=$computer
 'OSVersion'=$os.version
 'SPVersion'=$os.servicepackmajorversion

Listing 24.9 Modified .psm1 file

27324.3 Your turn

 'OSBuild'=$os.buildnumber
 'Manufacturer'=$cs.manufacturer
 'Model'=$cs.model
 'Procs'=$cs.numberofprocessors
 'Cores'=$cs.numberoflogicalprocessors
 'RAM'=($cs.totalphysicalmemory / 1GB)
 'Arch'=$proc.addresswidth
 'SysDriveFreeSpace'=$drive.freespace}
 $obj = New-Object -TypeName PSObject -Property $props
 $obj.psobject.typenames.insert('Toolmaking.MachineInfo')
 Write-Output $obj
 } #foreach
} #PROCESS
END {}
} #function

Listing 24.10 shows our view file. Because we wanted to use property names as column
headers, we could have resorted to the singleton tag trick for most of these (we
wanted the Cores and RAM columns right-aligned, so we needed the full tags). But
those singletons have messed us up so often that we felt better about making each col-
umn header a full tag pair.

<?xml version="1.0" encoding="utf-8" ?>
<Configuration>
<ViewDefinitions>
<View>
<Name>MachineInfo</Name>
<ViewSelectedBy>
<TypeName>Toolmaking.MachineInfo</TypeName>
</ViewSelectedBy>
<TableControl>
<TableHeaders>
<TableColumnHeader>
<Label>ComputerName</Label>
</TableColumnHeader>
<TableColumnHeader>
<Label>OSVersion</Label>
</TableColumnHeader>
<TableColumnHeader>
<Label>Model</Label>
</TableColumnHeader>
<TableColumnHeader>
<Label>Cores</Label>
<Alignment>Right</Alignment>
</TableColumnHeader>
<TableColumnHeader>
<Label>RAM</Label>
<Alignment>Right</Alignment>
</TableColumnHeader>
</TableHeaders>
<TableRowEntries>

Listing 24.10 Our new .format.ps1xml file

Inserts the custom
type name

274 CHAPTER 24 Enhancing script output presentation

<TableRowEntry>
<TableColumnItems>
<TableColumnItem>
<PropertyName>ComputerName</PropertyName>
</TableColumnItem>
<TableColumnItem>
<PropertyName>OSVersion</PropertyName>
</TableColumnItem>
<TableColumnItem>
<PropertyName>Model</PropertyName>
</TableColumnItem>
<TableColumnItem>
<PropertyName>Cores</PropertyName>
</TableColumnItem>
<TableColumnItem>
<PropertyName>RAM</PropertyName>
</TableColumnItem>
</TableColumnItems>
</TableRowEntry>
</TableRowEntries>
</TableControl>
</View>
</ViewDefinitions>
</Configuration>

The following listing shows our manifest file for the module.

#
Module manifest for module 'test'
#
Generated by: User
#
Generated on: 09/24/2023
#
@{
Script module or binary module file associated with this manifest.
RootModule = 'test.psm1'
Version number of this module.
ModuleVersion = '1.0'
Supported PSEditions
CompatiblePSEditions = @()
ID used to uniquely identify this module
GUID = 'e2baeaab-4dc7-4eda-a8a8-ad38298e3af0'
Author of this module
Author = 'User'
Company or vendor of this module
CompanyName = 'Unknown'
Copyright statement for this module
Copyright = '(c) 2023 User. All rights reserved.'
Description of the functionality provided by this module
Description = ''
Minimum version of the PowerShell engine required by this module

Listing 24.11 Our new .psd1 file

27524.3 Your turn

PowerShellVersion = ''
Name of the PowerShell host required by this module
PowerShellHostName = ''
Minimum version of the PowerShell host required by this module
PowerShellHostVersion = ''
Minimum version of Microsoft .NET Framework required by this module. This
prerequisite is valid for the PowerShell Desktop edition only.
DotNetFrameworkVersion = ''
Minimum version of the common language runtime (CLR) required by this
module. This prerequisite is valid for the PowerShell Desktop edition only.
CLRVersion = ''
Processor architecture (None, X86, Amd64) required by this module
ProcessorArchitecture = ''
Modules that must be imported into the global environment prior to
importing this module
RequiredModules = @()
Assemblies that must be loaded prior to importing this module
RequiredAssemblies = @()
Script files (.ps1) that are run in the caller's environment prior to
importing this module.
ScriptsToProcess = @()
Type files (.ps1xml) to be loaded when importing this module
TypesToProcess = @()
Format files (.ps1xml) to be loaded when importing this module
FormatsToProcess = @('./TestView.format.ps1xml')
Modules to import as nested modules of the module specified in
RootModule/ModuleToProcess
NestedModules = @()
Functions to export from this module, for best performance, do not use
wildcards and do not delete the entry, use an empty array if there are no
functions to export.
FunctionsToExport = '*'
Cmdlets to export from this module, for best performance, do not use
wildcards and do not delete the entry, use an empty array if there are no
cmdlets to export.
CmdletsToExport = '*'
Variables to export from this module
VariablesToExport = '*'
Aliases to export from this module, for best performance, do not use
wildcards and do not delete the entry, use an empty array if there are no
aliases to export.
AliasesToExport = '*'
DSC resources to export from this module
DscResourcesToExport = @()
List of all modules packaged with this module
ModuleList = @()
List of all files packaged with this module
FileList = @()
Private data to pass to the module specified in
RootModule/ModuleToProcess. This may also contain a PSData hashtable with
additional module metadata used by PowerShell.
PrivateData = @{
 PSData = @{
 # Tags applied to this module. These help with module discovery in
online galleries.

276 CHAPTER 24 Enhancing script output presentation

 # Tags = @()
 # A URL to the license for this module.
 # LicenseUri = ''
 # A URL to the main website for this project.
 # ProjectUri = ''
 # A URL to an icon representing this module.
 # IconUri = ''
 # ReleaseNotes of this module
 # ReleaseNotes = ''
 } # End of PSData hashtable
} # End of PrivateData hashtable
HelpInfo URI of this module
HelpInfoURI = ''
Default prefix for commands exported from this module. Override the
default prefix using Import-Module -Prefix.
DefaultCommandPrefix = ''
}

Summary
This chapter focused on enhancing the presentation of script output in PowerShell.
The guiding principle remains to create tools that excel at their specific tasks without
concerning themselves with input origins or output destinations. The chapter intro-
duced advanced techniques for improving the visual appeal of output beyond the
capabilities of built-in Format- cmdlets.

 The chapter began with a code snippet from a previous chapter, illustrating the
need for better output presentation. It then explored creating a default view using
PowerShell’s formatting system, leveraging existing view definitions for native core
commands. The process involved understanding and modifying XML-based format
files to define custom views.

 Key concepts covered include the following:

 Exploring default views for native PowerShell commands
 Modifying format files to define custom views for specific object types
 Creating a module manifest to specify the format view for a custom PowerShell

module
 Demonstrating the process through a hands-on exercise involving a PowerShell

script for retrieving machine information

Overall, the chapter provided valuable insights into improving the visual representa-
tion of script output in PowerShell, empowering you to create more polished and pro-
fessional tools.

277

Wrapping up
the .NET Framework

As you begin exploring the possibilities of what PowerShell can achieve, you’ll inev-
itably encounter situations where there’s no prebuilt cmdlet to perform your
desired task. In many instances, you may find that the extensive .NET Framework,
or possibly an external command, an old component object model (COM) object,
or something else, can address your needs. Can you use raw .NET components in
your scripts? The answer isn’t a straightforward no, but it’s also not a definitive yes.

25.1 Why PowerShell exists
To understand this better, let’s reflect on why PowerShell exists in the first place.
Microsoft Windows, as an operating system, offers an abundance of tools designed
to facilitate automation. It’s inherent to the nature of computers. The challenge
with Windows has always been that these automation capabilities are tailored for
professional software developers and may not be user-friendly for administrators
without extensive programming expertise or those pressed for time.

 You could automate Windows effectively if you were well-versed in C++, C#, and
other first-class Windows programming languages. However, you face difficulties if you
lack this knowledge or the time to delve into these lower-level languages or their APIs.

 PowerShell didn’t come into being to introduce new automation capabilities to
Windows. Instead, it aimed to provide an administrator-friendly means of using
what already existed. When you run a PowerShell cmdlet such as Get-Process,
you’re not executing brand-new code invented by someone at Microsoft. Inside
that cmdlet, you’ll find fundamental .NET Framework references coded in C#. In
essence, a C# developer acted as a translator for you. You run a PowerShell cmdlet,
and it’s translated into the C# and .NET Framework understood by Windows.

278 CHAPTER 25 Wrapping up the .NET Framework

 In essence, PowerShell is a translator—a wrapper. PowerShell cmdlets wrap around
.NET Framework, Common Information Model (CIM), COM, and other Windows
APIs. This approach delivers a more consistent user experience: cmdlet names follow
a uniform naming convention, accept input via parameters, and so on. You don’t need
to be familiar with the thousands of Windows APIs or the half-dozen languages
required to access them. PowerShell translates for you, all thanks to the work of the
developers who crafted PowerShell’s cmdlets.

 So, is using raw .NET Framework components in your scripts permissible? In their
raw form, no. However, performing a developer’s work by creating your wrappers for
that .NET functionality is acceptable. Instead of integrating arbitrary C#-like .NET
code into your script, you’ll craft your cmdlets to make .NET appear as a typical
PowerShell command. This is what we’ll explore in this chapter.

NOTE This topic has become less frequent because Microsoft has diligently
created numerous cmdlets. In the past, we often used domain name server
(DNS) as an example, but today, we have an array of DNS-specific PowerShell
cmdlets. Please bear with us if our example may appear somewhat light or not
entirely real-world. We aim to impart the process and pattern of building cus-
tom PowerShell cmdlets, which remains as relevant as ever.

25.1.1 A crash course in .Net

If you’re going to use .NET, you have to know some of the terminology; otherwise, the
documentation makes no sense:

 A type is a definition of a software thing. You see this word in PowerShell all the
time—whenever you run Get-Member, for example, you see the type name of
whatever you piped to Get-Member.

 A class is a kind of type. A class is a definition for a piece of functioning software.
The class describes how to interact with the software, but it’s just a definition.
For example, System.Diagnostics.Process is the type name for a class that
describes running processes on Windows.

 An instance is a concrete implementation of a class. For example, the Local
Security Authority Subsystem Service (LSASS) process is represented by an
instance of System.Diagnostics.Process. In most cases, you need to have an
instance of a class to interact with it. For example, you can’t terminate a process
unless you have a specific one to terminate.

 Some classes are abstract, meaning you don’t need a concrete instance to inter-
act. For example, the Math class in .NET is abstract, so you don’t have to instan-
tiate the class to calculate tangents and cosines.

 Classes consist of members. These are the things that make up the definition of
the class, and they are where Get-Member takes its name. There are some com-
mon kinds of members:
– Properties describe whatever the class represents, like a process name or a ser-

vice status. Sometimes, properties are read-only; other times, you can change

27925.2 Exploring a class

them. For example, you might be able to change a service name, but you
can’t modify the Status property to change whether the service is running.

– Methods take actions. A method might terminate a process or start a service.
Sometimes, methods take arguments, which are like command parameters.
Restarting a computer might let you specify a forced restart or a power-off,
for example.

– Events are triggered when something happens to an instance, such as a ser-
vice completing its startup. Although PowerShell isn’t great at event-driven
coding, you can sort of subscribe to an event, allowing you to execute code
when the event occurs.

The first big question people ask about working with .NET is, “How do I find the
bit of .NET that will do what I need?” This is like asking, “Who in the government
can make such and such happen?” We don’t know. We use Google a lot. Look, .NET
is huge—vastly huge. You may think it’s a huge distance down the road to your gro-
cery store, but that’s peanuts compared to .NET. And half the stuff Microsoft sells
adds to .NET. So, yeah, use Google.

 Once you think you’ve found the bit of .NET you want, you’ll usually find its docu-
mentation on Microsoft’s website, generally by following a Google query for the class
name. For example, plug in System.Diagnostics.Process, and you’ll find a page like
http://mng.bz/G9PN. Those pages are version-specific, so you have to make sure
you’re selecting (from the drop-down at the top of the page) the right .NET Frame-
work version. In addition, that URL will probably cease to exist the minute this book
hits paper—Microsoft is like that. That’s why we Google.

25.2 Exploring a class
PowerShell’s versatility shines in its ability to function as an immediate window for
.NET, enabling you to experiment with .NET code in real time. Let’s delve into some
practical examples.

 For instance, you can use the Math class from .NET for mathematical operations:

[Math]::Abs(-5)

TRY IT NOW Go ahead and try this on your workstation.

This example uses the Math class from .NET, which consists entirely of static members:

 The [] (square brackets) are PowerShell’s convention for identifying types.
By putting a type name in these brackets, you’re telling PowerShell to look up
the corresponding type—in this case, a class—in .NET. This is exactly the
same as declaring a variable as a [string]—in that case, you’re referring to
the System.String class.

 The :: (double colons) refer to static members of a class. These are always
used with a [classname] because you’re not instantiating the class. In other

http://mng.bz/G9PN

280 CHAPTER 25 Wrapping up the .NET Framework

words, you wouldn’t use double colons with an instance stored in a variable
(as in, $myobject::method).

 Abs() is a static method of the Math class, which we looked up in Microsoft
Developer Network (MSDN). It returns the absolute value of whatever input
you provide.

Let’s do something a little more complex—and a little more fun: making your com-
puter talk to you (thanks to Mark Minasi for this suggestion). Make sure your audio is
turned on and turned up to 11 for this one, and follow along.

 We Googled “.NET speech synthesis” and found ourselves at http://mng.bz/z0yZ.
The System.Speech.Synthesis namespace is documented there. In other words,
System.Speech.Synthesis isn’t the name of a type (meaning it isn’t the name of a
class). Instead, it’s the top-level portion of the name of several types (including
classes). The top part of the documentation page lists the classes that fall under this
namespace. Other types include enumerations, which are structures that define vari-
ous allowable input arguments (and assign easier-to-remember names, rather than
numbers, to those arguments). The remarks toward the end of the page provide
some basic overviews of how to use the classes in this namespace.

 The remarks seem to indicate System.Speech.Synthesis.SpeechSynthesizer is
the class we want to play with, so we’ll click through to http://mng.bz/0lPz, the docu-
mentation page for that.

NOTE Microsoft sometimes reorganizes its documentation, so if these URLs
don’t work, don’t panic! Google for the class name, and you’ll get to wher-
ever the docs are at the time.

Of particular interest is that none of the methods—remember, methods do things,
and we want to do something, so we’re looking at methods—are static. We can tell
because none of them have the little S icon that Microsoft uses to denote static mem-
bers. Lacking any static methods, we’ll need to instantiate the class to create a con-
crete instance providing access to methods. Instantiating a class requires us to use a
special method called a constructor, which constructs the instance. Many classes have
many constructors, often accepting input arguments to tell the new instance how to
build itself. In this case, the class is only listed with one constructor, and it has no
input arguments, so this should be easy:

PS C:\> $talk = new-object system.speech.synthesis.speechsynthesizer
new-object : Cannot find type
[system.speech.synthesis.speechsynthesizer]: verify that the
assembly containing this type is loaded.
At line:1 char:9
+ $talk = new-object system.speech.synthesis.speechsynthesizer
+ ~~
 + CategoryInfo : InvalidType: (:) [New-Object], PSArgum
 entException
 + FullyQualifiedErrorId : TypeNotFound,Microsoft.PowerShell.Comm
 ands.NewObjectCommand

https://shortener.manning.com/z0yZ
https://shortener.manning.com/0lPz
http://mng.bz/z0yZ
http://mng.bz/0lPz

28125.3 Making a wrapper

Well, crud—that’s not so easy. We’re guessing that PowerShell probably doesn’t load
the Speech portion of the System namespace automatically. Why would it? We proba-
bly must manually load that assembly to get that part of .NET into memory. The top of
the documentation says that the assembly is System.Speech.dll:

PS C:\> Add-Type -AssemblyName System.Speech
PS C:\> $talk = new-object system.speech.synthesis.speechsynthesizer

It’s important to specify the –AssemblyName parameter and to omit the .dll filename
extension. This should work for any core part of .NET that’s part of the Global Assembly
Cache (GAC); .NET knows how to find the correct physical file. And, as you can see, we
now have a $talk variable with our SpeechSynthesizer instance. Let’s make it talk.

 The docs list a few Speak() methods, each of which accepts a different type of
input argument. These are called overloads. In .NET, you can have multiple methods
with the same name, as long as each one accepts a unique combination of input argu-
ments. It looks like one overload accepts a string, so we should be able to run this:

PS C:\> $talk.speak('PowerShell to the rescue!')

Huzzah! It worked! From here, we can start playing around with other methods and
properties of the instance to see what they do.

25.3 Making a wrapper
We’re not finished. Remember, this .NET stuff is ugly—we want to make it PowerShell
pretty. So, let’s write a wrapper. Check out the following listing, which includes a call
to the new function so we can test it.

function Invoke-Speech {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$true,
 ValueFromPipeline=$true)]
 [string[]]$Text
)
 BEGIN {
 Add-Type -AssemblyName System.Speech
 $speech = New-Object -TypeName
System.Speech.Synthesis.SpeechSynthesizer
 }
 PROCESS {
 foreach ($phrase in $text) {
 $speech.speak($phrase)
 }
 }
 END {}
}
"One","Two","Three" | Invoke-Speech

Listing 25.1 Wrapper for the speech synthesizer

Command that takes
pipeline input

Loads the
assembly once

282 CHAPTER 25 Wrapping up the .NET Framework

We want to call out a few items:

 We’ve tried to stick with native PowerShell patterns as much as possible. The
function accepts pipeline input, for example, and we use that technique in the
test call.

 In pipeline mode, there’s no reason to repeatedly add the assembly and instan-
tiate the synthesizer, so that’s done in a Begin block.

 When $speech goes out of scope, the synthesizer will cease to exist automati-
cally, so removing the object in the End block is unnecessary. Similarly, we don’t
feel the need to unload the assembly (it’s not hurting anything or taking up
memory), so we don’t do so.

This isn’t ideal, though. In playing with the speech object, we noticed that it has a
Speak() method for synchronous speech—meaning the script will pause while the
speech happens—and a SpeakAsync() method, which will fire off the speaking and
allow the script to continue. We can see uses for both models, so we’d like to include
those as options for someone using our wrapper command. Here’s the new code.

function Invoke-Speech {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$true,
 ValueFromPipeline=$true)]
 [string[]]$Text,
 [switch]$Asynchronous
)
 BEGIN {
 Add-Type -AssemblyName System.Speech
 $speech = New-Object -TypeName
 System.Speech.Synthesis.SpeechSynthesizer
 }
 PROCESS {
 foreach ($phrase in $text) {
 if ($Asynchronous) {
 $speech.SpeakAsync($phrase)
 } else {
 $speech.speak($phrase)
 }
 }
 }
 END {}
}
1..10 | Invoke-Speech -Asynchronous
Write-Host "This appears"

“This appears” will be displayed before any of the . . . uh . . . other output:

This appears
IsCompleted

Listing 25.2 Adding SpeakAsync() support

Adds a new
parameter

Invokes SpeakAsync() if a
new parameter is used

Otherwise, uses the
Speak() method

28325.3 Making a wrapper

 False
 False
 False
 False
 False
 False
 False
 False
 False
 False

Well, that’s awkward looking. Going back and reading the docs, it appears that Speak-
Async() returns an object indicating whether the speech is completed. We don’t care
about that, so we need to suppress it. Here’s our final attempt.

function Invoke-Speech {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$true,
 ValueFromPipeline=$true)]
 [string[]]$Text,
 [switch]$Asynchronous
)
 BEGIN {
 Add-Type -AssemblyName System.Speech
 $speech = New-Object -TypeName
å System.Speech.Synthesis.SpeechSynthesizer
 }
 PROCESS {
 foreach ($phrase in $text) {
 if ($Asynchronous) {
 $null = $speech.SpeakAsync($phrase)
 } else {
 $speech.speak($phrase)
 }
 }
 }
 END {}
}
1..10 | Invoke-Speech -Asynchronous
Write-Host "This appears"

TRY IT NOW Seriously, give this a run. It’s fun. Then, check out http://mng
.bz/YRa7, which is a more complex version of our wrapper that you’ll love
playing with. Bravo Zulu!

Wrapping this small amount of code may seem like a waste of time, but it isn’t—it’s an
investment. Here are a few of the things you gain:

Listing 25.3 Suppressing the SpeakAsync() output

$null to the left to
suppress the output

https://shortener.manning.com/YRa7
http://mng.bz/YRa7
http://mng.bz/YRa7
http://mng.bz/YRa7

284 CHAPTER 25 Wrapping up the .NET Framework

 Nobody else on your team will need to research this object again—they can use
your simple, PowerShell-compliant command. We’d obviously add help to this
to make it even more PowerShell-native.

 If you start getting into unit testing with Pester, you can’t mock .NET stuff—
but because you’ve written a wrapper, you could mock calls to Invoke-Speech,
if needed.

 Documentation—if you take the time to produce at least comment-based
help—is built-in rather than requiring a Google search and MSDN spelunking.

25.4 A more practical example
Here’s a more practical example, which you might use in a controller script. Let’s say
you want to provide a graphical input box for your script. We used to do this in
VBScript, and the functionality is still available in the Visual Basic part of the .NET
Framework. First you need to add the assembly:

Add-Type -AssemblyName "microsoft.visualbasic"

The [microsoft.visualbasic.interaction] class has a static method called
InputBox() that takes three arguments, in this order: a prompt, a title, and a default
choice. Run this code to create the input box shown in figure 25.1:

[microsoft.visualbasic.interaction]::inputbox ("Enter a server name",
"PSServer Management",$null)

The user enters a value and clicks OK, and the value is written to the pipeline. You
would need to add error handling and validation in case they entered nothing or
clicked Cancel. If you wanted to use this often, you could create a function around it.
For example, we’ve written a short one in the following listing.

function Invoke-InputBox {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True)]
 [string]$Prompt,
 [Parameter(Mandatory=$True)]

Listing 25.4 Quick and easy InputBox wrapper

Figure 25.1 An input box

28525.5 Your turn

 [string]$Title,
 [Parameter()]
 [string]$Default = ''
)
 Add-Type -Assembly Microsoft.VisualBasic
 [microsoft.visualbasic.interaction]::inputbox($prompt,$title,$default)
} #function

This illustrates how small a wrapper can be, how easy it is to create, and how much eas-
ier wrappers can make it for someone else to use .NET.

25.5 Your turn
This is such an important task that we’d like you to give it a try.

25.5.1 Start here

The System.Net.Dns class has a static method named GetHostByAddress(). It’s
designed to look up a hostname, given its IP address. Go on—look it up online, and
experiment with it in the shell.

25.5.2 Your task

Write a Get-DnsHostByAddress wrapper function. It should accept one or more IP
addresses, and, for each one, emit an object containing the IP address and the corre-
sponding hostname. If no hostname is available, it should return a null for the hostname.

25.5.3 Our take

Playing with this on the command line, we discovered that the method returns an
object with three properties: HostName, which is great; Aliases, which could be fun;
and AddressList, which looks to be an array. We decided to keep this simple and
focus only on HostName in our wrapper, as shown in the following listing.

function Get-DnsHostByAddress {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$true,
 ValueFromPipeline=$true)]
 [string[]]$Address
)
 BEGIN {}
 PROCESS {
 ForEach ($Addr in $Address) {
 $props = @{'Address'=$addr}
 Try {
 $result = [System.Net.Dns]::GetHostByAddress($addr)
 $props.Add('HostName',$result.HostName)
 } Catch {
 $props.Add('HostName',$null)
 }

Listing 25.5 Our wrapper for looking up DNS hostnames

286 CHAPTER 25 Wrapping up the .NET Framework

 New-Object -TypeName PSObject -Property $props
 } #foreach
 } #PROCESS
 END {}
} #function
Get-DnsHostByAddress -Address '204.79.197.200','192.168.254.254',
 '35.166.24.88'

There are a few things we’d like you to notice:

 We made sure to test both a legitimate IP address (hi, Bing.com!) as well as a
bad one because we have different output in each situation.

 In normal command error handling, we’d have to specify an –ErrorAction to
ensure a trappable exception. .NET methods don’t work that way—when they
fail, they always produce a trappable exception, so our Try block works perfectly.

 You might prefer to use Unknown or some value other than $null for failed
hosts. We like $null, so we used that.

 We started a hash table for our eventual output object’s properties right up front.
Then, depending on the outcome of the query, we added a HostName property.
We like this technique—it lets us dynamically construct our output a piece at a
time and then push it all out into the pipeline as an object when finished.

Summary
This chapter provided an insightful exploration into the integration of PowerShell
with the .NET Framework. It began by discussing the raison d’être of PowerShell,
which is to provide a user-friendly interface for leveraging existing automation capa-
bilities within Windows. PowerShell achieves this by acting as a translator or wrapper
around various Windows APIs, including the .NET Framework, COM, and CIM.

 The chapter then delved into the fundamentals of .NET, introducing key concepts
such as types, classes, instances, and members. It emphasized the vastness of the .NET
ecosystem and the importance of leveraging online resources, like Microsoft’s docu-
mentation, to navigate it effectively.

 Next, the chapter demonstrated how PowerShell can interact with .NET classes in
real time, allowing you to perform tasks such as mathematical operations and text-to-
speech synthesis. It illustrated the process of utilizing .NET classes within PowerShell
scripts and emphasized the benefits of creating PowerShell wrappers for .NET func-
tionality to enhance usability and maintainability.

 We concluded with practical examples of creating PowerShell wrappers for .NET
functionality, including a wrapper for speech synthesis and an input box function. We
encouraged you to experiment with integrating .NET functionality into PowerShell
scripts and provided a hands-on exercise to reinforce learning.

 Overall, chapter 25 served as a valuable guide for harnessing the power of the
.NET Framework within PowerShell scripts, empowering you to extend PowerShell’s
capabilities and streamline automation tasks effectively.

287

Storing data—
not in Excel!

PowerShell offers the capability to generate and modify Excel documents dynami-
cally. Yet just because it’s feasible doesn’t mean it’s the right approach. Excel isn’t
designed to function as a database, and it’s disheartening to witness individuals
grappling with it as such. Developing scripts that interact with Excel through Power-
Shell necessitates the use of Microsoft Office Programmability components, which
are integrated into .NET when Office is installed. These components, in turn, rely on
a Component Object Model (COM) interface that Microsoft hasn’t updated in ages.

 It’s hard to watch administrators crafting scripts that involve extensive Excel-
related code, resulting in a time-consuming, exasperating, and unproductive expe-
rience. We strongly advise against pursuing this approach. However, the need to
store data will inevitably arise. In such cases, a more suitable alternative is available.

26.1 Introducing SQL Server!
We’re pretty sure you’ve heard of Microsoft SQL Server. If you have one in your
environment, see if you can get a small database set up on it for your use. You won’t
be loading it with work, and it won’t cost a dime. Or, if nothing else, install the free
SQL Server Express (the 2022 edition can be found at http://mng.bz/K9Pn, but
you can use whatever version you like as far as this chapter is concerned). We rec-
ommend downloading the one with Advanced Services (although the name is
slightly different from version to version), which includes Reporting Services. We
also recommend downloading SQL Server Management Studio (SSMS); frankly,
it’s easier for you to Google “SQL Server Management Studio download” than to
give you a URL because Microsoft moves that around a good bit.

https://shortener.manning.com/K9Pn
http://mng.bz/K9Pn

288 CHAPTER 26 Storing data—not in Excel!

NOTE We don’t want this chapter to get bogged down in teaching you about
SQL Server or how to manage it. If you need some place to start, take a look
at Learn SQL Server Administration in a Month of Lunches (Manning, 2014;
http://mng.bz/9QP8). Manning also has a live video “book” titled SQL in
Motion by Ben Brumm (2017, www.manning.com/livevideo/sql-in-motion).
You can also check out Learn dbatools in a Month of Lunches (Manning, 2022,
http://mng.bz/VRJ5).

Here are some of the advantages of using SQL Server (or, honestly, any relational
database management system—if you prefer one over SQL Server, most of what’s in
this chapter will still work fine for you):

 Databases simplify adding, deleting, updating, and querying data, making these
tasks very easy.

 SQL Server Reporting Services (SSRS) can produce beautiful reports, which you
design in a friendly, drag-and-drop designer environment. The non–Express
Reporting Services can run and deliver those reports on a schedule for you.

 PowerShell works excellently with SQL Server (and other databases).

You’ll need to master a few pieces of terminology and a couple of concepts:

 Of course, you connect to a server, but you also connect to a specific database.
There’s a particular database called master that you connect to when you want to
create a new database for yourself.

 The connection is made by specifying a connection string, essentially a database’s
contact location. It also includes authentication information.

 A database consists of tables, each of which is roughly analogous to an Excel
sheet. Therefore, you can think of a database as an Excel workbook.

 A table consists of rows and columns, like an Excel sheet. Database geeks some-
times refer to these as entities and domains as well.

26.2 Setting up everything
Frankly, the one-time server and database setup takes longer to explain and perform
than using the dang thing. First, as already stated, we assume you’ve installed SQL
Server Express. We’re using 2016, and we performed a Basic install (which doesn’t
prompt for anything else). Subsequent editions won’t be much different to install,
and you can accept all the defaults if there are any setup prompts. If you’re using an
SQL Server on your network somewhere, have the administrator give you the server
name and, if there is one, the instance name.

NOTE Whatever user account you used to install SQL Server Express will usu-
ally be set up as Administrator of the SQL Server Express instance. This is true
whether you’re in a domain environment or not.

Second, you need a database. If you’re using an SQL Server on your network, the admin-
istrator must create a database (2 GB to 3 GB is acceptable; advise them that the Simple

https://shortener.manning.com/9QP8
http://www.manning.com/livevideo/sql-in-motion
http://mng.bz/VRJ5

28926.2 Setting up everything

Recovery model is okay for now). They’ll need to give you the database name and let
you know whether you can connect using your Windows log-on credentials or if there’s a
separate username and password for you to use.

 If you installed SQL Server Express locally and used all the default settings, then
you’ve installed an instance named SQLEXPRESS. Run the PowerShell script in list-
ing 26.1 to create a new database named Scripting. Use your Windows log-on creden-
tials to connect; the new database will be the default minimum size (usually about 2
GB). Note that this isn’t suitable for a production environment because there are sev-
eral database options you’d typically set, and you’d want to arrange for backups; read
Learn SQL Server Administration in a Month of Lunches (http://mng.bz/9QP8) if you’d
like to explore those tasks.

$conn_string =
"Server=localhost\SQLEXPRESS;Database=master;Trusted_Connection=True;"
$conn = New-Object System.Data.SqlClient.SqlConnection
$conn.ConnectionString = $conn_string
$conn.Open()
$sql = @"
CREATE DATABASE Scripting;
"@
$cmd = New-Object System.Data.SqlClient.SqlCommand
$cmd.CommandText = $sql
$cmd.Connection = $conn
$cmd.ExecuteNonQuery()
$conn.close()

Third, there’s no third thing. You’ll need a connection string, but you should already
have everything you need. Ours is this:

Server=localhost\SQLEXPRESS;Database=master;Trusted_Connection=True;

As you can see, we used that in the code to create a new database; when we’re ready to
use that database, we’ll change master to Scripting in the connection string. That
same connection string works for any database where you can use your Windows log-
on credentials to connect. If, instead, you need to specify a username and password, it
will look like

Server=localhost\SQLEXPRESS;Database=master;un=xxxxx;pw=yyyyyy;

where xxxxx and yyyyy are your SQL Server username and password, respectively.

Listing 26.1 Set up a new database on SQL Server Express instance

Defines the
connection string

Creates the
connection object

Configures the
connection object

Defines
a SQL
query

Creates a SQL
Command
object

Configures the
command to
use the queryConfigures the

command to use
the connectionExecutes the

command
Closes the
database

connection

https://shortener.manning.com/9QP8

290 CHAPTER 26 Storing data—not in Excel!

TIP We use ConnectionStrings.com to come up with our connection strings.
It’s an invaluable reference. Why remember that stuff when you can look it up?

26.3 Using your database: Creating a table
You first need to decide what you’ll put in the database. This isn’t a one-time decision;
just as with Excel, you can add and remove sheets (tables) and modify the columns
used in each table at any time. Let’s start with the command in listing 26.2. Like most
commands we write, this produces objects as output, so it’s a perfect starting point
(and yes, we’ve used this particular command before).

TIP For development and testing purposes, you’ll save this script as its script
module. You’ll add additional commands to this .psm1 file as you go, keeping
everything nicely grouped together.

function Get-DiskInfo {
 [CmdletBinding()]
 Param(
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True)]
 [string[]]$ComputerName
)
 BEGIN {
 Set-StrictMode -Version 2.0
 }
 PROCESS {
 ForEach ($comp in $ComputerName) {
 $params = @{'ComputerName' = $comp
 'ClassName' = 'Win32_LogicalDisk'}
 $disks = Get-CimInstance @params
 ForEach ($disk in $disks) {
 $props = @{'ComputerName' = $comp
 'Size' = $disk.size
 'Drive' = $disk.deviceid
 'FreeSpace' = $disk.freespace
 'DriveType' = $disk.drivetype}
 New-Object -TypeName PSObject -Property $props
 } #foreach disk
 } #foreach computer
 } #PROCESS
 END {}
}

Examining the command, it produces the following:

 Computer name—A string
 Disk size—A large integer
 Drive type—A small (single-digit) integer
 Disk free space—A large integer
 Drive ID—A string

Listing 26.2 Start with a command that produces objects as output

29126.3 Using your database: Creating a table

Therefore, you need to create a table that can contain this information. In addition,
you’ll add a field to track the date that each row is added to the table. That way, you
can periodically inventory drive information and construct a trend line of free space.
(We’d use SSRS to produce that trend report; it’s beyond the scope of this book to get
into report production, but PowerShell.org offers a free e-book on the subject if you’d
like to investigate further on your own.) Listing 26.3 shows what we’re adding to our
.psm1 file (the downloadable version of this listing at http://mng.bz/rjgE is the entire
thing; we’re saving some space in the book by only showing the additional code here).
Most of the code should start looking familiar because we used it earlier.

function New-DiskInfoSQLTable {
 [CmdletBinding()]
 param()
 $conn = New-Object System.Data.SqlClient.SqlConnection
 $conn.ConnectionString = $DiskInfoSqlConnection
 $conn.Open()
 $sql = @"
 IF NOT EXISTS (SELECT * FROM sysobjects WHERE name='diskinfo' AND
xtype='U')
 CREATE TABLE diskinfo (
 ComputerName VARCHAR(64),
 DiskSize BIGINT,
 DriveType TINYINT,
 FreeSpace BIGINT,
 DriveID CHAR(2),
DateAdded DATETIME2
)
"@
 $cmd = New-Object System.Data.SqlClient.SqlCommand
 $cmd.Connection = $conn
 $cmd.CommandText = $sql
 $cmd.ExecuteNonQuery() | Out-Null
 $conn.Close()
}
$DiskInfoSqlConnection =
"Server=localhost\SQLEXPRESS;Database=Scripting;Trusted_Connection=True;"
Export-ModuleMember -Function Get-DiskInfo
Export-ModuleMember -Variable DiskInfoSqlConnection

We want to point out that we’ve added a module-level variable outside any function to
contain the database connection string. That makes it easier to reuse that information
in numerous functions. You explicitly export that variable, along with the first func-
tion, so that all will be added to the global scope of the shell whenever the module is
loaded. Similarly, if the module is unloaded, they’ll all be neatly removed from the
global scope. Why don’t you export the new table-creation function? There’s no rea-
son for anyone outside this module to run that, so by not exporting it, you make it pri-
vate to this module.

Listing 26.3 Adding code for table creation

https://shortener.manning.com/rjgE

292 CHAPTER 26 Storing data—not in Excel!

 The new command does what we think is a neat trick: it first checks to see whether
the table exists. If it doesn’t, the command creates the table. This way, you can repeat-
edly call the new command, and it’ll always make sure the table exists.

 This is probably a good time to go over the broad process this code uses because
you’ll see it again two more times:

1 Create a new System.Data.SqlClient.SqlConnection object. This represents
the connection to SQL Server. Set its ConnectionString property to your con-
nection string, and then call its Open() method. If the connection string isn’t
right, this is where you’ll generate an error. You also fill in a call to the Close()
method at the end of the command.

2 Build the query in a here-string, mainly to format it nicely. You use double
quotes for the here-string because SQL Server uses single quotes as its string
delimiter. Double quotes make it easy to use single quotes inside the here-string
and insert variables and subexpressions. Having the query in a variable makes it
easy to output it using Write-Verbose, so you can double-check the query syn-
tax easily if there’s an error.

3 Create a new System.Data.SqlClient.SqlCommand, and set its Connection prop-
erty to the opened Connection object. Set its CommandText property to your
query, and ask it to ExecuteNonQuery(). That method is used when you know
your query won’t return any results; it will return -1 for a successful query, so
you pipe that to Out-Null to suppress it.

You’ll use these same two objects in the same way in the upcoming commands.

NOTE If you aren’t using SQL Server, .NET includes the equivalent System
.Data.OleDbClient namespace along with OleDbConnection and OleDb-
Command classes for connecting to other databases.

You may be wondering how we came up with all the data types for the CREATE TABLE
statement. Simple—we looked them up. Googling “SQL Server data types” took us to
http://mng.bz/j1l9, which was pretty useful. In reality, we find ourselves lazily using
just a few data types:

 VARCHAR()—This lets you specify a maximum field length and takes up less
space if you use less than the maximum. VARCHAR(MAX) enables you to store any
amount of text.

 CHAR()—Creates fixed-length text columns.
 TINYINT—Holds integers from 0 to 255.
 BIGINT—Holds pretty much any size integer.
 DATETIME2—Holds date/time values.

You may also have use for FLOAT or INT, and you can read all about them in the
SQL documentation.

https://shortener.manning.com/j1l9

29326.4 Saving data to SQL Server

26.4 Saving data to SQL Server
Now, you’re ready to make a third command, shown in the listing 26.4, which will
accept the output of the disk inventory command and export that information into
your SQL Server table. Once again, the downloadable version of this includes the
entire script module for your convenience.

function Export-DiskInfoToSQL {
 [CmdletBinding()]
 param(
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True)]
 [object[]]$DiskInfo
)
 BEGIN {
 New-DiskInfoSQLTable
 $conn = New-Object System.Data.SqlClient.SqlConnection
 $conn.ConnectionString = $DiskInfoSqlConnection
 $conn.Open()
 $cmd = New-Object System.Data.SqlClient.SqlCommand
 $cmd.Connection = $conn
 }
 PROCESS {
 ForEach ($object in $DiskInfo) {
 if ($object.size -eq $null) {
 $size = 0
 } else {
 $size = $object.size
 }
 if ($object.freespace -eq $null) {
 $freespace = 0
 } else {
 $freespace = $object.freespace
 }
 $sql = @"
 INSERT INTO DiskInfo (ComputerName,
 DiskSize,DriveType,FreeSpace,DriveID,DateAdded)
 VALUES('$($object.ComputerName)',
 $size,
 $($object.DriveType),
 $freespace,
 '$($object.Drive)',
 '$(Get-Date)')
"@
 $cmd.CommandText = $sql
 Write-Verbose "EXECUTING QUERY `n $sql"
 $cmd.ExecuteNonQuery() | Out-Null
 } #ForEach
 } #PROCESS
 END {
 $conn.Close()
 }
}

Listing 26.4 Adding a command to export data to SQL Server

294 CHAPTER 26 Storing data—not in Excel!

NOTE Notice how we’re checking to see whether Size and FreeSpace are
Null? That can happen with disks like optical drives. We set those values to 0
in those cases so that we have a valid value to add to the database.

There’s a big caveat that we need to point out. The new command’s –DiskInfo
parameter does accept pipeline input—but you’ll notice that it accepts anything
because its data type is System.Object. Therefore, it’s entirely possible to pipe the
parameter a service object, a process object, or something else it won’t know how to
deal with. You can’t do much about that. Yes, you could modify the Get-DiskInfo
function to add a custom type name, but that won’t allow you to specify that type
name as the only allowable input to Export-DiskInfoToSQL; PowerShell unfortu-
nately doesn’t work that way. If you wanted to tightly couple these two commands and
ensure that Export-DiskInfoToSQL could only accept the objects produced by Get-
DiskInfo, you’d need to create your own class. PowerShell v5 and later can do that,
but it’s a more complex topic that’s out of the scope of this book. (The PowerShell
Scripting & Toolmaking Book gets into it, and it can be updated because it’s online
only [https://leanpub.com/powershell-scripting-toolmaking]. The situation with classes
in PowerShell is highly fluid and ever-changing at this time.) For now, you must
accept that you must be careful about using Export-DiskInfoToSQL. Let’s take a
look at our code in the following listing.

function Export-DiskInfoToSQL {
 [CmdletBinding()]
 param(
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True)]
 [object[]]$DiskInfo
)
 BEGIN {
 New-DiskInfoSQLTable
 $conn = New-Object System.Data.SqlClient.SqlConnection
 $conn.ConnectionString = $DiskInfoSqlConnection
 $conn.Open()
 $cmd = New-Object System.Data.SqlClient.SqlCommand
 $cmd.Connection = $conn
 $checks = 0
 }
 PROCESS {
 if ($checks -eq 0) {
 $checks++
 $props = $DiskInfo[0] |
 Get-Member -MemberType Properties |
 Select-Object -Expand name
 if ($props -contains 'ComputerName' -and
 $props -contains 'Drive' -and
 $props -contains 'DriveType' -and
 $props -contains 'FreeSpace' -and

Listing 26.5 Adding member checks for input objects

Checks the
first input
object

https://leanpub.com/powershell-scripting-toolmaking

29526.4 Saving data to SQL Server

 $props -contains 'Size') {
 Write-Verbose "Input object passes check"
 } else {
 Write-Error "Illegal input object"
 Break
 }
 }
 ForEach ($object in $DiskInfo) {
 if ($object.size -eq $null) {
 $size = 0
 } else {
 $size = $object.size
 }
 if ($object.freespace -eq $null) {
 $freespace = 0
 } else {
 $freespace = $object.freespace
 }
 $sql = @"
 INSERT INTO DiskInfo (ComputerName,
 DiskSize,DriveType,FreeSpace,DriveID,DateAdded)
 VALUES('$($object.ComputerName)',
 $size,
 $($object.DriveType),
 $freespace,
 '$($object.Drive)',
 '$(Get-Date)')
"@
 $cmd.CommandText = $sql
 Write-Verbose "EXECUTING QUERY `n $sql"
 $cmd.ExecuteNonQuery() | Out-Null
 } #ForEach
 } #PROCESS
 END {
 $conn.Close()
 }
}

Avoiding SQL injection
In listing 26.5, we left intact something that’s a no-no for most public-facing applica-
tions: dynamically constructing a query by inserting variable contents into a string. In
production-style applications, this opens you to an attack called SQL injection. We’re
fairly safe from it because we’re the only ones using this database, but it’s some-
thing you need to be aware of and read up on if you start to accept data provided by
other people.

What you could do, and what the listing does, is create some checks on the input to
the command. We decided to ensure the objects we fed had the expected properties.
This will slightly slow things down as we make the check, so we only check the first
object fed to us and assume all the others are just like it.

296 CHAPTER 26 Storing data—not in Excel!

Go ahead and put some data into the database:

get-diskinfo $env:ComputerName | Export-DiskInfoToSQL

26.5 Querying data from SQL Server
Although we don’t think there’s an immediate real-world use for this—we would
intend to load data into SQL Server and leave it there for SSRS to create reports
from—we want to show you an example of querying data. The following listing is the
final chunk of code to add to your module. Again, we suggest using the downloadable
version if you want to try this because it has all the code in one place.

function Import-DiskInfoFromSQL {
 [CmdletBinding()]
 Param()
 $conn = New-Object System.Data.SqlClient.SqlConnection
 $conn.ConnectionString = $DiskInfoSqlConnection
 $conn.Open()
 $cmd = New-Object System.Data.SqlClient.SqlCommand
 $cmd.Connection = $conn
 $sql = @"
 SELECT ComputerName,DiskSize,DriveType,FreeSpace,
 DriveID,DateAdded
 FROM DiskInfo
 ORDER BY DateAdded ASC
"@
 $cmd.CommandText = $sql
 $reader = $cmd.ExecuteReader()
 # spin through the results
 while ($reader.read()) {
 $props = @{'ComputerName' = $reader['ComputerName']
 'Size' = $reader['DiskSize']
 'DriveType' = $reader['DriveType']
 'FreeSpace' = $reader['FreeSpace']
 'Drive' = $reader['DriveId']
 'DateAdded' = $reader['DateAdded']}
 New-Object -TypeName PSObject -Property $props
 }
 $conn.Close()
}

Notice again that you follow the toolmaking patterns we’ve taught throughout this
book—you produce a command, which uses parameters for its input (and, in this case, a
module-level variable), produces objects as output, and so on. The only thing we’ve
omitted in this book, purely for space considerations, is the comment-based help we’d
typically always include.

 We also want to acknowledge that not everyone would code this command as we did.
Some folks prefer to use a DataTable object versus a DataReader, and we admit that
a DataTable can be faster for this precise scenario. We took this approach because it’s

Listing 26.6 Adding a command to retrieve data from SQL Server

Loops through the
results and creates
a custom object

297Summary

more educational and procedural. It reads the result set one line at a time and con-
structs output objects one at a time, reinforcing the pattern presented throughout
this book.

 Finally, you’ll notice a discrepancy if you’ve been paying close attention. The original
Get-DiskInfo outputs an object having Size and Drive properties, and Import-
DiskInfoFromSQL mirrors those output property names. But the table in SQL Server
uses DiskSize and DriveID as column names. Why the mismatch? We did this so that we
could emphasize that the table structure doesn’t need to match the object structure
exactly. In this case, the Import and Export functions translate the property names into
what the table uses. This is a useful technique when you don’t have control over the
object or table structure and need to switch things up as you store and retrieve data.

 To complete the circle, let’s pull the information we just added:

PS C:\> Import-DiskInfoFromSQL
DateAdded : 9/23/2023 5:24:01 PM
Drive : C:
FreeSpace : 27722903552
ComputerName : WIN11
DriveType : 3
Size : 206266429440
DateAdded : 9/23/2023 5:24:01 PM
Drive : D:
FreeSpace : 16025034752
ComputerName : WIN11
DriveType : 3
Size: 26843541504

Summary
We hope this chapter has demonstrated how relatively straightforward it is to use SQL
Server as a database rather than something database-esque like Excel. You followed
proper toolmaking practices and created a set of commands that work with disk-inven-
tory information. You enabled automated reporting through SSRS if you decided to
sit down and design the reports there. By using a scheduled task to run the inventory
and SSRS to create periodic reports automatically, you could completely automate
data collection and data reporting processes, taking yourself out of the loop and free-
ing up your time to work on other tasks. The SQL team at Microsoft also has a fantas-
tic SQL server module, and don’t forget about DBATools.

298

Never the end

Welcome to the end! Or is it? Of course not—you’re just beginning—but you’ve
made it to the point where you can start to be an effective toolmaker. Now it’s time
to begin thinking about what comes next.

27.1 Welcome to toolmaking
At this point, we’re hoping you’ve seen the light about this toolmaking word. It isn’t
just about scripting. It’s about making small units of work that follow PowerShell’s
rules, so that they can connect. It’s about making controllers that put those tools into
a specific situation and context, giving those tools a purpose for that moment in
time—but leaving the tools themselves free to have another purpose at another
time. Hopefully, you’ve also seen the value in examining how PowerShell does
things natively and in duplicating its approaches in your work.

 The best compliment we get when we teach this material—whether in a class, at a
conference, or in a book like this—is something like, “Well, thanks a lot—now I have
to go and rewrite all of my scripts!” We love that because it shows that we’ve taught
someone effectively and done a good job of making them realize how valuable this
approach is. Of course, this doesn’t mean they must rewrite their existing work. If you
have something that works, let it be. But if the occasion arises where you need to fix a
bug or add a feature, then begin to incorporate the changes inspired by this book.

 Of course, we can only take you so far in one book. You’re going to need to go
further, and you’ll need to do that soon. Like, as soon as you finish reading this
chapter—until you start doing this stuff for real, your brain won’t completely lock
on to the concepts and the techniques. You’re already forgetting stuff from chap-
ter 2—so it’s crucial to start putting things to work right now.

29927.2 Taking your next step

27.2 Taking your next step
Our best advice is to stop learning for a minute and start doing. You have plenty of facts
and techniques to tackle your first tool and controller. As soon as you do, you’ll realize
you forgot a few things—and that’s great news! No, really—you’ll realize that you forgot
something, flip to the right chapter, and refresh yourself. This relearning strengthens
the bonds between the neurons in your brain responsible for remembering this mate-
rial, making it easier to recall the information the next time. But you won’t realize
you’ve forgotten, and you won’t take the steps to relearn until you dive in and start doing.

 With that in mind, we have a few recommendations for your next step:

 Don’t try to tackle the biggest problem on your plate. Look for something small that
you may already have a pretty good idea of how to conquer. That way, you can
focus on the new approaches and techniques you’ve learned. As you gain confi-
dence, you can build more complex tools and controllers.

 Don’t give in to expediency. The approaches and techniques we’ve shared don’t
add much time to your coding, but they do add a bit. You’re going to have to
take time to do parameter design, for example, and code for accepting pipeline
input. The investment is worth it because you’ll quickly begin to do those things
almost by reflex. The alternative—“I’ll bang it out for now and go back and fix
it later”—is a bad idea. You may not have time later to do it right, and then
you’ll be stuck with something that is, well, wrong.

 Get stuck. For better or for worse, human brains seem to learn better when
they’re conquering a problem than when they’re being passively fed information.
With that in mind, dive into something, get stuck, and unstick yourself. Forums
like those at ServerFault.com and PowerShell.org are valuable resources—state
your problem, describe what you’ve tried, and provide some details (like error
messages) about what didn’t work. Don’t ask people to write your script for
you—be clear that you only need a nudge in the right direction.

 Share. Every time you figure out a problem, blog about it. The act of recalling
the problem and the solution is what strengthens neural connections in your
brain. Writing down what you did—even if it’s for an internal company blog
that nobody but you and your team will read—helps you learn. If you’re able to
blog publicly, you’ll help someone. Remember, many people are smarter than
you, but due to the birth rate, new people are always struggling with the same
thing you just solved. Help them out.

 Do the math. Anytime you’re automating something, begin by figuring out how
much time your organization spends doing it manually per year. If you can, cal-
culate that in hours, perhaps by looking at your help desk ticketing solution for
a report. Get an average salary for the people who spend time solving that prob-
lem manually. Multiply that salary by 1.14 (a rough way of calculating a fully
loaded salary, at least in most of North America), and then divide by 2,000 (the
average number of working hours in a year). The result is a fully loaded hourly

http://ServerFault.com
http://PowerShell.org

300 CHAPTER 27 Never the end

rate for that person, which you can multiply by the number of hours spent
performing a task manually. The end result is the amount of money your organi-
zation spends on that problem. It becomes easy to calculate a return on invest-
ment when you know how much was being spent, how long it took to automate
the problem, and how much time it needs to be paid now that the problem is
automated.

 Don’t “script by Google.” When starting a new project, your first step should not be
to open a browser and search for an existing script. Even if you find something,
how do you know it works? Will it work in your environment? Do you have the
PowerShell chops to determine whether it’s good PowerShell? Plus, you’ll most
likely spend much time revising hardcoded variables and the like. That’s a waste
of time. You’d be better off beginning with PowerShell’s help system and going
through the process yourself. Yeah, it might take longer, but you’ll learn, and at
the end, you’ll have a tool that you know works in your environment. It’s fine to
search for examples of how to use a particular cmdlet or parameter, but you’ll
never succeed with copy-and-paste scripting.

This is all about becoming a more professional toolmaker.

27.3 What’s in your future?
So, what’s in the long term? What are some of the things you should be exploring in
the PowerShell universe? Keep in mind that it’s a rapidly changing space and requires
constant attention if you want to keep up. Here are some areas to think about:

 PowerShell Core is an open source project at https://GitHub.com/powershell
that will run on macOS, a variety of Linux distributions, and, of course, Win-
dows. Explore it.

 Open source projects such as PlatyPS, Pester, and the PowerShell Script Ana-
lyzer (PSScriptAnalyzer) are great tools—look into them, and start learning to
use them in your everyday toolmaking. Even better, get involved by posting
problems and maybe even contributing code.

 Community events such as PowerShell Saturdays, the annual PowerShell +
DevOps Global Summit (powershellsummit.org), and regional PowerShell Con-
ferences (e.g., PowerShell Conference Europe and PowerShell Conference Asia)
are all worth your time—as are the dozens of local PowerShell user groups scat-
tered throughout the world.

 Finally, always be on the lookout for new sources of learning material. Manning
has several books and new things coming out all the time that may help. We’re
also responsible for a lot of content on Pluralsight (www.pluralsight.com). If
nothing else, follow James on X (formerly Twitter) @PSJames. PowerShell (plus
toolmaking) is a big, exciting universe with a lot to explore. Set aside a little
time each week to catch up with the latest and explore something new. And, of
course, keep toolmaking in your organization!

http://powershellsummit.org
http://Pluralsight.com
https://GitHub.com/powershell

301Summary

Summary
The concluding chapter of our book, titled “Never the end,” served as a motivational
call to action as you embark on your journey of toolmaking with PowerShell. It
emphasized that reaching the end of the chapter is not the end of the learning pro-
cess but rather the beginning of an exciting new phase.

 We encouraged you to reflect on the significance of toolmaking in PowerShell,
highlighting its role in creating reusable units of work that adhere to PowerShell’s
principles. We stressed the importance of practical application and urged you to start
implementing what you’ve learned immediately to solidify your understanding.

 Additionally, we provided practical advice for your next steps, including starting
small, embracing the learning process, seeking assistance from forums, sharing knowl-
edge, calculating return on investment, and avoiding reliance on copy-and-paste
scripting. We offered insights into future areas of exploration within the PowerShell
universe, such as PowerShell Core, open-source projects, community events, and addi-
tional learning resources.

 Overall, this chapter served as a reminder that the journey of learning and tool-
making with PowerShell is ongoing and encouraged you to continue exploring, grow-
ing, and contributing to the vibrant PowerShell community.

303

index

Symbols

symbol 37
_ (underscore) character 110
+ (plus) symbol 116

A

about_comment_based_help topic 135
about_if 34
action tools 47
Active Directory module 54
Add-Member cmdlet 113–114
Add verb 52
administrative privileges 10
advanced functions

CmdletBinding attribute 96–104
accepting pipeline input 98–100
mandatory-ness 100
parameter aliases 101
parameter validation 101
supporting -Confirm and -WhatIf 102

Set-TMServiceLogon command 104
AliasesToExport 159
AllSigned execution policy 62–63
assumptions, avoiding making 21
automated testing 212
automated unit tests 69

B

-Bar parameter 33
basic functions 86–90

designing input parameters 87

designing output 89
writing code 88

Begin block 99–100, 282
BEGIN code 27
Big Book of PowerShell Error Handling, The

(PowerShell.org) 141
BITS (Background Intelligent Transfer

Service) 84, 94, 106
block comment 133
Break keyword 44
bugs 78
bugs, avoiding

command-discovery process 79
importance of test environment 81
knowing what you need 83
process matters 83
running commands 82
what you need to run 78–80

business requirements, example 75–77
Bypass policy 58, 63–64
ByPropertyName input 100
ByPropertyName parameter 29–33,

105
failure of 32–33
planning ahead 33
tracing 30, 32

ByValue input 100
ByValue method 27
ByValue parameter 25–29, 105

Trace-Command 25–26
tracing 26, 29
when fails 29

INDEX304

C

Catch block 144, 147
certificates 224
Change method 85
Check-PasswordExpiration function 174, 176
CIM (Common Information Model) 79, 91, 113,

278
CimSession 183
class 278
CmdletBinding attribute 96–97, 99, 102–104,

131
accepting pipeline input 98–100

PropertyNames 100
running commands in non-pipeline

mode 99
running commands in pipeline mode 99

mandatory-ness 100
parameter aliases 101
parameter validation 101
supporting -Confirm and -WhatIf 102

CmdletsToExport 159
-CN parameter 102
code, formatting 181–185
code clarity 182
code-signing, basics 225–231

acquiring code-signing certificate 225
signing scripts 228
testing script signatures 230
trusting self-signed certificates 227

coercion 29
collections 36
columns 288
COM (component object model) 57, 277
Command Palette 12
commands

avoiding bugs 80–81
running 80–82

comment-based help 132–136, 139–140
going further with 135
starting 136

common parameters 96–104
comparisons 34

collections 36
troubleshooting 36
wildcards 35

CompatiblePSEditions 158
-ComputerName parameter 19, 68, 70–71,

73, 85, 88, 99–101, 105
ComputerName property 100
$ComputerName variable 100
ConfirmImpact setting 103

-Confirm parameter 102–103
$ConfirmPreference variable 103
-Confirm switch 103
Connection property 292
connection string 288
Connect-MgGraph command 174
Connect-MyMgGraph function 174, 176
constructors 280
ContainsKey() method 95
Continue preference 119
controllers 49–50, 54

characteristics of 49
defined 46–47
tools vs. 50

controller script 18, 53
ConvertTo-HTML command 25–27, 48, 77,

93
CreateStaleCustomerCSV-DataFile.ps1 49
CreateStaleCustomerHTML-Report.ps1 49
CREATE TABLE statement 292
credential object 190
CustomerRecord tool 50

D

data
accepting 24
hardcoded 49
input 47
querying, from SQL Server 296
saving, to SQL Server 293–296
storing 287

creating tables 290–292
setting up SQL Server Express 288–290

[datetime] data type 88
Dcom 152
DCOM (distributed component object

model) 89, 150
-Debug parameter 97
default views 260–270

adding custom type name to output
objects 263

adding view file to module 268–270
creating new view file 264–268
exploring Microsoft’s views 260–263

.DESCRIPTION keyword 134
design

one task 67
sets of commands 75
tools 67
usage examples in 72–74

DisablePasswordExpiration policy 174

INDEX 305

discovery process 79
-DiskInfo parameter 294
DNS (domain name server) 278
Do loop 152
domains 288
DotNetFrameworkVersion 158
Do/While construct 42
Drive property 297
DscResourcesToExport 159
dynamic parameters 102

E

-EA (alias) 142
-EA Stop 143
echo command 168
ElseIf section 37
emailing passwords 51
emailing users whose passwords are about to

expire 51
End block 99–100, 282
End If statement 37
entities 288
enumerations 280
-eq (equal to) operator 24
-ErrorAction parameter 97, 142, 147
$ErrorActionPreference variable 97, 142
-ErrorLogFilePath parameter 76, 93
errors 141, 148–152

bad handling 143
exception handling 147
handling exceptions for non-commands

147
overview of 141

-ErrorVariable parameter 97, 146
ETS (Extensible Type System) 114
example code 14
.EXAMPLE keyword 134
exception handling 147

reasons for 143
exceptions

exporting 159
handling for non-commands 147
overview of 141

execution policy 10, 57
execution scope 59
getting 60
servers 58
setting 61

Export-Clixml 127
Export- command 77, 93
Export-CSV command 48

Export-ModuleMember 160
extensions 11

F

-FilePath parameter 68, 71
files, setting permissions on 52–53
filtering process 52
Finally block 147
Find-Module cmdlet 233
fixtures, creating 215
-Foo parameter 33
-Force parameter 90, 225
For construct 43
ForEach construct 39, 41, 93
ForEach enumerator 41
ForEach loop 99–100, 144
ForEach-Object command 41
Format 110
Format- 259, 263
Format-Command 77, 93
formats 158
FormatsToProcess 159
FormatsToProcess variable 158, 270
FreeSpace value 294
function declaration 131
functions

advanced
CmdletBinding attribute 96–104

accepting pipeline input 98–100
mandatory-ness 100
parameter aliases 101
parameter validation 101
supporting -Confirm and -WhatIf

102
common parameters 96–104

building basic 86–90
designing input parameters 87
designing output 89
writing code 88

creating, script modules 90
FunctionsToExport 159

G

Get-ADComputer command 113
Get-ADUser command 52
Get-AuthenticodeSignature cmdlet 230
Get-ChildItem command 62
Get-CimInstance 192
Get-CimInstance cmdlet 82, 109, 121
Get-Command 18

INDEX306

Get-Command cmdlet 19
Get-Command -verb invoke 84
Get-Content command 68
Get-DiskInfo command 297
Get-DnsHostByAddress wrapper function

285
Get-Eventlog command 50
Get-EventLog system command 261
Get-ExecutionPolicy cmdlet 10
Get-FolderSize function 168–169, 171
Get-GlobalUser command 18
Get-MachineInfo example 94
Get-Member cmdlet 278
Get-PasswordExpirationWindow function

174
Get-Process cmdlet 277
Get-Process command 14, 25, 28
Get-ServiceAccountPassword tool 48
Get-SystemUser command 75
Get-TMIPInfo function 161
Get-UserHomeFolderInfo function 171
Get verb 71
Get-Verb cmdlet 70
Get-Verb command 18–19
Git 193

overview 194–195
repository basics 195–202

branching and merging 200–202
committing change 197
creating repository 195
rolling back change 197–199
staging change 196

source control with 193
overview 205–209

using with VS Code 202–205
git clone command 209
global scope 189

H

hardcoded data 49
help

broken 135
comment-based help 132–140

going further with 135
starting 136

providing 188
where to put 131

help desk GUI 53
here-strings 197
HostName property 286

I

-Id parameter 32
If construct 36–39, 89, 93, 101, 115
Import-Module command 95
-InformationAction parameter 97, 123, 125
information output 123–128
$InformationPreference variable 97, 123
-InformationVariable parameter 97, 123, 125
innovation, avoiding 22
-InputObject parameter 25, 27–28
input parameters, designing 87
.INPUTS section 135
input tools 47
Install-Module Microsoft.Graph 171
Install-Module Pester command 216
[int] data type 88
integration testing 213
interfaces 53
Invoke-CimMethod 94, 105
Invoke-Command cmdlet 19
Invoke-Speech 284
ISE (Integrated Script Editor) 11
ISESteroids 13
It block 217, 219

J

-Job parameter 31

K

key pairs 224

L

Learn PowerShell in a Month of Lunches
(Manning) 20

.LINK heading 135

.LINK keyword 135
-LogFailuresToPath parameter 146
$LogFailuresToPath parameter 101
logic, over complexity 187
LSASS (Local Security Authority Subsystem

Service) 278

M

-MachineName parameter 102
malware vector 57
MAML (Microsoft Assistance Markup

Language) 135

INDEX 307

MANDATORY check 28, 30
mandatory-ness 100
MANDATORY parameters 26
manifests

creating 154–157
examining 157

exporting members 159
metadata 157
prerequisites 158
root module 157
scripts, types, and formats 158

filling out 153
man pages 131
master database 289
Math class 279
meaningful variable names 187
members 278

exporting 159
-MessageData parameter 123
metadata 157
Microsoft, views 260–263
Microsoft script repository 237
microsoft.visualbasic.interaction class

284
mocks, creating 217
module manifest, execution order 153
modules

adding view file to 268–270
creating manifests 154–157
managing revisions 236
publishing 236

MoLTools module 95
MoLTools-Prelim module 95
MolTools script module 94
moving parts 79
MSInfo32 command 54
MyCommand property 123
$myinvocation.mycommand line 123
$MyInvocation variable 123
MyTools module 161
MyTools.psm1 script module 160

N

NAMED parameter 26, 30
-Name parameter 29, 102
names, tools 18
namespaces 264
naming

parameters 19
tools 19

NestedModules 158

.NET Framework
classes 279–281
overview 277–279
wrappers 281–284

New-ADUser tool 29, 51
New-CimSession cmdlet 82
New-CimSession command 144
New-CimSessionOption 152
New-ModuleManifest command 161
New-Object command 120
NewPassword parameter 105
New-SystemUser command 75
NewUser parameter 95, 105
Nobody service 141
NO COERCION phrase 28
non-pipeline mode 99
Note-Property 113
.NOTES section 135
$null value 286

O

objects 107
alternatives to New-Object 112
assembling information 108
constructing and emitting output 109
enriching 112
output 110

example 114–116
Object type 25
OK status 171
onscreen results 21
operating system 23
[ordered] hash table 110
Orphan Status property 171
OSBuild property 113
OSDUIHelper object 31
Out-Default cmdlet 118
Out-File command 19
Out-Null command 26–27
output 20

constructing and emitting 109
designing 89
objects 110

example 114–116
producing 20–21

output presentation, creating custom views 271
task 272

.OUTPUTS section 135
output streams 118
output tools 48
-OutVariable parameter 97

INDEX308

P

Param() block 87–88
Param() section 88
[Parameter()] decorator 99
parameter aliases 101
parameter binding 23

and pipeline 23, 33
ByPropertyName parameter 29–33

failing 32
planning ahead 33
tracing 30–32

operating system 23
parameter binding and pipeline

ByPropertyName parameter 29
failure of 32–33
tracing 30, 32

ByValue parameter 25
Trace-Command 25–26
tracing 26, 29

importance of parameters 24
visualizing pipeline 24

.PARAMETER keyword 134
parameters 24

importance of 24
naming 19

parameter sets 102
parameter validation 101
Param part 131
$params hash table 116
password expiration notification script 171–176
passwords, emailing users 51
-Path parameter 71
permissions, setting file 52
Pester 212

testing
integration tests 213
testing what isn’t yours 214
unit tests 214
what to test 213

writing basic tests 214–221
adding more tests 218–220
code coverage 220
creating fixture 215
creating mock 217
writing first test 217

pipeline 19
ByValue 25–29
Trace-Command 26
tracing 26–28
when fails 29
See also parameter binding and pipeline

pipeline input, accepting 98–100
PropertyNames 100
running commands in non-pipeline mode 99
running commands in pipeline mode 99

-PipelineVariable parameter 97
PKI (public key infrastructure) 224
positional parameters 24, 26, 30
PowerShell

administrative privileges 6
asking for help 8
installing 10
overview of 3
script editor 6
security as default application 61
streams 118
toolmaking 4
version 6

PowerShell Gallery 233
PowerShellHostName 158
PowerShell.org 141
powershell value 12
PowerShellVersion 158
PowerShell way of doing things 16

avoid innovation 22
don’t assume 21
naming parameters 19
naming tools 19
producing output 20–21
writing single-task tools 17

preference variables 119
prerequisites 158

checking 91
private key 224
PROCESS{} label 105
Process objects 28–29, 32, 38
ProcessorArchitecture 158
PROCESS script block 99–100, 144
professional-grade scripting

elegance 190
formatting code 183–187
logic over complexity 187
meaningful variable names 187
providing help 188
security 190

properties 20
PropertyNames 100
$props variable 109
Protocol parameter 89, 101
$Protocol variable 88
provisioning new users 51
$PSBoundParameters variable 95
pscredential object 190

INDEX 309

[pscustomobject] type accelerator 112, 120
PSModulePath environment variable 90, 92
PSObject (PowerShell Object) 25
PSScriptAnalyzer tool 182
-PSSession parameter 19
publishing scripts 236

getting API key 235
importance of 232
managing revisions 236
other options 233
reinventing wheel 233
updating manifest 234

Q

-Query parameter 85

R

Read-Content cmdlet 70
Read-Host command 188
Read verb 71
RemoteSigned policy 58–59
Remove-CimSession cmdlet 82
Remove-Item command 143
Remove-SystemUser command 75
RequiredModules 158
Restart-Computer command 214, 217
Restricted policy 58–60, 63
ReturnValue property 95
revisions, managing 236
rows 288

S

script block 37, 40
script design 67
script editors 11, 13
ScriptFileInfo, creating 238
scripting

changing your brain when it comes to 167
example 179
task 179

code clarity 182
comments 183
controllers 49
examples of 50–53

emailing users whose passwords are about to
expire 51

helping help desk 53
provisioning new users 51
setting file permissions 52

expectations 7
next steps 299–300
overview of 46
professional-grade 181

avoiding aliases 187
elegance 190
flexibility 189
formatting code 183–187
logic over complexity 187
meaningful variable names 187
not polluting global scope 189
providing help 188

single quotes 189
source control 181
tools 47

vs. controllers 46, 50
scripting environment 9, 14

administrative privileges and execution
policy 10

example code 14
lab environment 13
operating system 9
script editors 11, 13

scripting language 34
break 44
comparisons 34

collections 36
troubleshooting 36
wildcards 35

For construct 43
ForEach construct 39–41
If construct 36–39
overview 34
switch construct 42

script modules
building 91
creating 90

script output presentation 259
script publishing, PowerShell Gallery 233
scripts 158

password expiration notification 171–176
publishing 237–240

creating ScriptFileInfo 238
getting API key 235
managing published scripts 240
updating manifest 234
using Microsoft script repository 237

running 61
security and 62

security 56–57
execution policy 57–61
PowerShell as default application 61

INDEX310

script signing
certificates 224
code-signing basics 225–231

acquiring code-signing certificate
225

testing script signatures 230
trusting self-signed certificates 227

significance of 223
ScriptsToProcess 158
security 57

execution policy 57–61
professional-grade scripting 190
scripts and

PowerShell as default application 61
running scripts 62

Select-Object 170
Select-Object cmdlet 109, 114
Select-Object command 94
Send-PasswordExpirationNotification

function 174–175
servers, execution policy 58
ServiceName parameter 105
Set-Content cmdlet 200
Set-ExecutionPolicy RemoteSigned 10
Set-MachineStatus tool 70
Set-Service cmdlet 84
Set-Service command 75
Set-SystemUser command 75
Should -Invoke command 219
ShouldProcess feature 103–105
SIEM (Security Information and Event

Management) 48
signatures 224
SilentlyContinue preference 119
single quotes 189
single-task tools, writing 17
singleton tag 265
Size property 297
Size value 294
SKIPPED portion 31
source control 181

Git 193–194
branching and merging 200–202
committing change 197
repository basics 195–202
rolling back change 197–199
staging change 196

integrating with GitHub 205–209
reasons for 193
using Git with VS Code 202–205

SQLEXPRESS instance 289
SQL injection 295

SQL Server
overview of 287
querying data from 296
saving data to 293–296

SQL Server Express, setting up 288
SSRS (SQL Server Reporting Services)
288
-Status parameter 29
Stop error action 143
Stop-Job command 31–32
Stop protocol 152
Stop-Service command 29
streams 118

information output 123–128
output 118
overview 128
verbose output 119
warning output 119
Write-Verbose statement

overview 121–123
[string] data type 88
[string] parameter 100
String objects 28, 70, 99
stubs 136
Success stream 118
[switch] data type 88
[switch] parameter 101
switch construct 42, 115–116
.SYNOPSIS keyword 134
SysDriveFreeSpace 110
System.Data.OleDbClient namespace

292
System.Data.SqlClient.Sql-Command 292
System.Diagnostics.Process 25, 28
SystemDrive property 108
System namespace 281
System.PSCustomObject object type 263
System.Speech.Synthesis namespace

280
System.String class 279
System.String type 27

T

tables 288
creating 290–292

-Tags parameter 236
tasks 52–53
TDD (test-driven development) 74
TerminatedUsers group 55
-terminating error 141
terminating exception 144

INDEX 311

testing
coding to be tested 213
designing tools 69
manual 212
Pester, writing basic tests 214–221

adding more tests 218–220
code coverage 220
creating fixture 215
creating mock 217
writing first test 217

vision for 211
what to test 213

integration tests 213
testing what isn’t yours 214
unit tests 214

TFS (Team Foundation Services) 193
thumbprint 226
toolmaking 3–4, 298

future of 300
tools 50

characteristics and types of 47–48
controllers vs. 46, 50
defined 46–47
designing 70
naming 18–19
single-task, writing 17

Trace-Command 25–26, 29
Trace-Command cmdlet 32–33
tracing

ByPropertyName parameter 30, 32
ByValue parameter 26, 29

Trap construct 148
triggering tasks 53
troubleshooting, comparisons 36
Try block 144, 147, 286
Try/Catch construct 144, 148
type name 278
types 158
TypesToProcess 158
typing parameter 24

U

Unblock-File command 91
UNC (universal naming convention) 63
Undefined policy 58
unintentional script execution 59
unit testing 213
Unrestricted policy 58
Update-Help command 136
Update-OrgCMDatabase command 73
usage examples, in design 72–74

UserHomeFolderFileServer tool 52
users

emailing user passwords 51
provisioning new 51–52

V

[ValidateSet()] attribute 101
variables, meaningful names 187
VariablesToExport 159
Verb-Noun naming syntax 18
-Verbose command 130
verbose output 119
-Verbose parameter 76, 93, 95, 97, 119–120
$VerbosePreference variable 97
views 262

creating custom 271–272
creating default 260–270

adding custom type name to output
objects 263

adding view file to module 268–270
creating new view file 264–268
exploring Microsoft’s views 260–263

visualizing pipeline 24
VM (virtual machine) 79
VS Code (Visual Studio Code) 11, 80, 202–205,

261

W

-Warning-Action SilentlyContinue 146
warning output 119
-WhatIf parameter 102–103
-WhatIf switch 103
Where-Object command 24, 48, 52, 171
wildcards 35
-wildcard switch 42
Win32_ class 84
Win32_ComputerSystem class 82
Win32_LogicalDisk class 82
Win32_OperatingSystem class 82
Win32_Service class 84
WinRM (Windows Remote Management) 20
WMI (Windows Management

Instrumentation) 57, 79, 191
WPF (Windows Presentation Framework) 49
wrappers 281–284
Write-Host 126–127, 168
Write-Host cmdlet 123
Write-Host command 188
Write-Information 123–124
Write-Output command 87, 168

INDEX312

Write-Verbose cmdlet 119
Write-Verbose command 130
Write-Verbose statement 121–123
Write-Warning cmdlet 120
writing, single-task tools 17

Wsman 152
WSman (Web Services Management) 89, 150
WWPD (What Would PowerShell Do?)

avoiding innovation 22
not assuming 21

	Learn PowerShell Scripting in a Month of Lunches, Second Edition
	Praise for the First Edition
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	About the code
	liveBook discussion forum

	about the authors
	Part 1
	1 Before you begin
	1.1 What is toolmaking?
	1.2 Is this book for you?
	1.3 What you need for this book
	1.3.1 PowerShell version
	1.3.2 Administrative privileges
	1.3.3 Script editor

	1.4 How to use this book
	1.5 Expectations
	1.6 How to ask for help
	Summary

	2 Setting up your scripting environment
	2.1 The operating system
	2.2 PowerShell
	2.3 Administrative privileges and execution policy
	2.4 Script editors
	2.5 Our lab environment
	2.6 Example code
	2.7 Your turn
	Summary

	3 WWPD: What would PowerShell do?
	3.1 One tool, one task
	3.2 Naming your tools
	3.3 Naming parameters
	3.4 Producing output
	3.5 Don’t assume
	3.6 Avoid innovation
	Summary

	4 Review: Parameter binding and the PowerShell pipeline
	4.1 The operating system
	4.2 It’s all in the parameters
	4.3 Pipeline: ByValue
	4.3.1 Introducing Trace-Command
	4.3.2 Tracing the ByValue parameter binding
	4.3.3 When ByValue fails

	4.4 ByPropertyName
	4.4.1 Let’s trace ByPropertyName
	4.4.2 When ByPropertyName fails
	4.4.3 Planning ahead

	Summary

	5 Scripting language: A crash course
	5.1 Comparisons
	5.1.1 Wildcards
	5.1.2 Collections
	5.1.3 Troubleshooting comparisons

	5.2 The If construct
	5.3 The ForEach construct
	5.4 The Switch construct
	5.5 The Do/While construct
	5.6 The For construct
	5.7 Break
	Summary

	6 The many forms of scripting (and which to choose)
	6.1 Tools vs. controllers
	6.2 Thinking about tools
	6.3 Thinking about controllers
	6.4 Comparing tools and controllers
	6.5 Some concrete examples
	6.5.1 Emailing users whose passwords are about to expire
	6.5.2 Provisioning new users
	6.5.3 Setting file permissions
	6.5.4 Helping the help desk

	6.6 Control more
	6.7 Lab
	Summary

	7 Scripts and security
	7.1 Security is number one
	7.2 Execution policy
	7.2.1 Execution scope
	7.2.2 Getting your policies
	7.2.3 Setting an execution policy

	7.3 PowerShell isn’t the default application
	7.4 Running scripts
	7.5 Recommendations
	Summary

	Part 2
	8 Always design first
	8.1 Tools do one thing
	8.2 Tools are testable
	8.3 Tools are flexible
	8.4 Tools look native
	8.5 For example
	8.6 Your turn
	8.6.1 Start here
	8.6.2 Your task
	8.6.3 Our take

	Summary

	9 Avoiding bugs: Start with a command
	9.1 What you need to run
	9.2 Breaking it down, and running it right
	9.3 Running commands and digging deeper
	9.4 Process matters
	9.5 Know what you need
	9.6 Your turn
	9.6.1 Start here
	9.6.2 Your task
	9.6.3 Our take

	Summary

	10 Building a basic function and script module
	10.1 Starting with a basic function
	10.1.1 Designing the input parameters
	10.1.2 Writing the code
	10.1.3 Designing the output

	10.2 Creating a script module
	10.3 Prereq check
	10.4 Running the command
	10.5 Your turn
	10.5.1 Start here
	10.5.2 Your task
	10.5.3 Our take

	Summary

	11 Getting started with advanced functions
	11.1 About CmdletBinding and common parameters
	11.1.1 Accepting pipeline input
	11.1.2 Mandatory-ness
	11.1.3 Parameter validation
	11.1.4 Parameter aliases
	11.1.5 Supporting –Confirm and –WhatIf

	11.2 Your turn
	11.2.1 Start here
	11.2.2 Your task
	11.2.3 Our take

	Summary

	12 Objects: The best kind of output
	12.1 Assembling the information
	12.2 Constructing and emitting output
	12.3 A quick test
	12.4 An object alternative
	12.5 Enriching objects
	12.6 Your turn
	12.6.1 Start here
	12.6.2 Your task
	12.6.3 Our take

	Summary

	13 Using all the streams
	13.1 Knowing the seven output streams
	13.2 Adding verbose and warning output
	13.3 Doing more with -Verbose
	13.4 Information output
	13.4.1 A detailed Information stream example

	13.5 Your turn
	13.5.1 Start here
	13.5.2 Your task
	13.5.3 Our take

	Summary

	14 Simple help: Making a comment
	14.1 Where to put your help
	14.2 Getting started
	14.3 Going further with comment-based help
	14.4 Broken help
	14.5 Beyond comments
	14.6 Your turn
	14.6.1 Start here
	14.6.2 Your task
	14.6.3 Our take

	Summary

	15 Errors and how to deal with them
	15.1 Understanding errors and exceptions
	15.2 Bad handling
	15.3 Two reasons for exception handling
	15.4 Handling exceptions in your tool
	15.5 Capturing the exception
	15.6 Handling exceptions for non-commands
	15.7 Going further with exception handling
	15.8 Your turn
	15.8.1 Start here
	15.8.2 Your task
	15.8.3 Our take

	Summary

	16 Filling out a manifest
	16.1 Module execution order
	16.2 Creating a new manifest
	16.3 Examining the manifest
	16.3.1 Metadata
	16.3.2 The root module
	16.3.3 Prerequisites
	16.3.4 Scripts, types, and formats
	16.3.5 Exporting members

	16.4 Your turn
	16.4.1 Start here
	16.4.2 Your task
	16.4.3 Our take

	Summary

	Part 3
	17 Changing your brain when it comes to scripting
	17.1 Example 1
	17.1.1 The critique
	17.1.2 Our take
	17.1.3 Thinking beyond the literal

	17.2 Example 2
	17.2.1 The walkthrough
	17.2.2 Our take

	17.3 Your turn
	17.3.1 Start here
	17.3.2 Your task
	17.3.3 Our take

	Summary

	18 Professional-grade scripting
	18.1 Using source control
	18.2 Code clarity
	18.3 Effective comments
	18.4 Formatting your code
	18.5 Meaningful variable names
	18.6 Avoiding aliases
	18.7 Logic over complexity
	18.8 Providing help
	18.9 Avoiding Write-Host and Read-Host
	18.10 Sticking with single quotes
	18.11 Not polluting the global scope
	18.12 Being flexible
	18.13 Prioritizing security
	18.14 Striving for elegance
	Summary

	19 An introduction to source control with Git
	19.1 Why source control?
	19.2 What is Git?
	19.2.1 Installing Git
	19.2.2 Git basics

	19.3 Repository basics
	19.3.1 Creating a repository
	19.3.2 Staging a change
	19.3.3 Committing a change
	19.3.4 Rolling back a change
	19.3.5 Branching and merging

	19.4 Using Git with VS Code
	19.5 Integrating with GitHub
	Summary

	20 Pestering your script
	20.1 The vision
	20.2 Problems with manual testing
	20.3 Benefits of automated testing
	20.4 Introducing Pester
	20.5 Coding to be tested
	20.6 What do you test?
	20.6.1 Integration tests
	20.6.2 Unit tests
	20.6.3 Don’t test what isn’t yours

	20.7 Writing a basic Pester test
	20.7.1 Creating a fixture
	20.7.2 Writing the first test
	20.7.3 Creating a mock
	20.7.4 Adding more tests
	20.7.5 Code coverage

	Summary

	21 Signing your script
	21.1 The significance of script signing
	21.2 A word about certificates
	21.3 Configure your script signing policy
	21.4 Code-signing basics
	21.4.1 Acquiring a code-signing certificate
	21.4.2 Trusting self-signed certificates
	21.4.3 Signing your scripts
	21.4.4 Testing script signatures

	Summary

	22 Publishing your script
	22.1 The importance of publishing
	22.2 Exploring the PowerShell Gallery
	22.3 Other publishing options
	22.4 Before you publish
	22.4.1 Are you reinventing the wheel?
	22.4.2 Updating your manifest
	22.4.3 Getting an API key

	22.5 Ready, set, publish
	22.5.1 Managing revisions

	22.6 Publishing scripts
	22.6.1 Using the Microsoft script repository
	22.6.2 Creating ScriptFileInfo
	22.6.3 Publishing the script
	22.6.4 Managing published scripts

	Summary

	Part 4
	23 Squashing bugs
	23.1 The three kinds of bugs
	23.2 Dealing with syntax bugs
	23.3 Dealing with results bugs
	23.4 Dealing with logic bugs
	23.4.1 Setting breakpoints
	23.4.2 Setting watches
	23.4.3 So much more
	23.4.4 Don’t be lazy

	23.5 Your turn
	23.5.1 Start here
	23.5.2 Your task
	23.5.3 Our take

	Summary

	24 Enhancing script output presentation
	24.1 Our starting point
	24.2 Creating a default view
	24.2.1 Exploring Microsoft’s views
	24.2.2 Adding a custom type name to output objects
	24.2.3 Creating a new view file
	24.2.4 Adding the view file to a module

	24.3 Your turn
	24.3.1 Start here
	24.3.2 Your task
	24.3.3 Our take

	Summary

	25 Wrapping up the .NET Framework
	25.1 Why PowerShell exists
	25.1.1 A crash course in .Net

	25.2 Exploring a class
	25.3 Making a wrapper
	25.4 A more practical example
	25.5 Your turn
	25.5.1 Start here
	25.5.2 Your task
	25.5.3 Our take

	Summary

	26 Storing data— not in Excel!
	26.1 Introducing SQL Server!
	26.2 Setting up everything
	26.3 Using your database: Creating a table
	26.4 Saving data to SQL Server
	26.5 Querying data from SQL Server
	Summary

	27 Never the end
	27.1 Welcome to toolmaking
	27.2 Taking your next step
	27.3 What’s in your future?
	Summary

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

